
Further pthread Practice
2021 — 03 — 23

Today’s lab is much the same as yesterday: there are a bunch of snip-
pets in this .zip file to work through. Answer each question below for
the relevant .c file.

1. Write the fizzbuzz function used as an entrypoint to the threads.
You are given a pointer to an integer as an argument. Convert to:

• "Fizz" if it divides by 3

• "Buzz" if it divides by 5

• "no div" if it divides by neither, so we don’t have to do int-
>string conversion!

2. 1.c prints our numbers in order, because it gets the return value
from each thread and prints those. They print in order, because
we print when we join each thread, and we join each thread in the
order we started them.
Move the printing logic so that each thread prints the string it
calculated instead. Are they still in order? Why, or why not?

3. Fully comment 3.c and explain how the code works, and what it
does. You can ignore the sleeping logic — I’ve commented that for
us, and it’s not something we covered in lectures!

4. Modify 3.c so that it accepts only a pointer to a bool as input,
rather than the struct. Calculate the total in the thread and re-
turn an address using pthread_exit()1. Print the total in the main 1 NOTE: You probably don’t want to

return an address to the thread’s stack,
because the stack will collapse when
the function joins. Instead, the address
should be heap-allocated, and free’d at
the end of your main thread.

thread after catching the return value.

5. Implement a program which starts two pthreads. One reads input
from the user, and adds numbers to a total. The other prints the
current total value every 3 seconds. After 30 seconds, the main
thread sets a bool to false that signals to both threads that they
should join, just like in 3.c. You can use sleep(int seconds) from
unistd.h to make your threads sleep.


