You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Enso-Bot/venv/Lib/site-packages/google/protobuf/internal/reflection_test.py

3328 lines
134 KiB
Python

#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# Protocol Buffers - Google's data interchange format
# Copyright 2008 Google Inc. All rights reserved.
# https://developers.google.com/protocol-buffers/
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Unittest for reflection.py, which also indirectly tests the output of the
pure-Python protocol compiler.
"""
import copy
import gc
import operator
import six
import struct
import warnings
try:
import unittest2 as unittest #PY26
except ImportError:
import unittest
from google.protobuf import unittest_import_pb2
from google.protobuf import unittest_mset_pb2
from google.protobuf import unittest_pb2
from google.protobuf import unittest_proto3_arena_pb2
from google.protobuf import descriptor_pb2
from google.protobuf import descriptor
from google.protobuf import message
from google.protobuf import reflection
from google.protobuf import text_format
from google.protobuf.internal import api_implementation
from google.protobuf.internal import more_extensions_pb2
from google.protobuf.internal import more_messages_pb2
from google.protobuf.internal import message_set_extensions_pb2
from google.protobuf.internal import wire_format
from google.protobuf.internal import test_util
from google.protobuf.internal import testing_refleaks
from google.protobuf.internal import decoder
from google.protobuf.internal import _parameterized
if six.PY3:
long = int # pylint: disable=redefined-builtin,invalid-name
warnings.simplefilter('error', DeprecationWarning)
class _MiniDecoder(object):
"""Decodes a stream of values from a string.
Once upon a time we actually had a class called decoder.Decoder. Then we
got rid of it during a redesign that made decoding much, much faster overall.
But a couple tests in this file used it to check that the serialized form of
a message was correct. So, this class implements just the methods that were
used by said tests, so that we don't have to rewrite the tests.
"""
def __init__(self, bytes):
self._bytes = bytes
self._pos = 0
def ReadVarint(self):
result, self._pos = decoder._DecodeVarint(self._bytes, self._pos)
return result
ReadInt32 = ReadVarint
ReadInt64 = ReadVarint
ReadUInt32 = ReadVarint
ReadUInt64 = ReadVarint
def ReadSInt64(self):
return wire_format.ZigZagDecode(self.ReadVarint())
ReadSInt32 = ReadSInt64
def ReadFieldNumberAndWireType(self):
return wire_format.UnpackTag(self.ReadVarint())
def ReadFloat(self):
result = struct.unpack('<f', self._bytes[self._pos:self._pos+4])[0]
self._pos += 4
return result
def ReadDouble(self):
result = struct.unpack('<d', self._bytes[self._pos:self._pos+8])[0]
self._pos += 8
return result
def EndOfStream(self):
return self._pos == len(self._bytes)
@_parameterized.named_parameters(
('_proto2', unittest_pb2),
('_proto3', unittest_proto3_arena_pb2))
@testing_refleaks.TestCase
class ReflectionTest(unittest.TestCase):
def assertListsEqual(self, values, others):
self.assertEqual(len(values), len(others))
for i in range(len(values)):
self.assertEqual(values[i], others[i])
def testScalarConstructor(self, message_module):
# Constructor with only scalar types should succeed.
proto = message_module.TestAllTypes(
optional_int32=24,
optional_double=54.321,
optional_string='optional_string',
optional_float=None)
self.assertEqual(24, proto.optional_int32)
self.assertEqual(54.321, proto.optional_double)
self.assertEqual('optional_string', proto.optional_string)
if message_module is unittest_pb2:
self.assertFalse(proto.HasField("optional_float"))
def testRepeatedScalarConstructor(self, message_module):
# Constructor with only repeated scalar types should succeed.
proto = message_module.TestAllTypes(
repeated_int32=[1, 2, 3, 4],
repeated_double=[1.23, 54.321],
repeated_bool=[True, False, False],
repeated_string=["optional_string"],
repeated_float=None)
self.assertEqual([1, 2, 3, 4], list(proto.repeated_int32))
self.assertEqual([1.23, 54.321], list(proto.repeated_double))
self.assertEqual([True, False, False], list(proto.repeated_bool))
self.assertEqual(["optional_string"], list(proto.repeated_string))
self.assertEqual([], list(proto.repeated_float))
def testMixedConstructor(self, message_module):
# Constructor with only mixed types should succeed.
proto = message_module.TestAllTypes(
optional_int32=24,
optional_string='optional_string',
repeated_double=[1.23, 54.321],
repeated_bool=[True, False, False],
repeated_nested_message=[
message_module.TestAllTypes.NestedMessage(
bb=message_module.TestAllTypes.FOO),
message_module.TestAllTypes.NestedMessage(
bb=message_module.TestAllTypes.BAR)],
repeated_foreign_message=[
message_module.ForeignMessage(c=-43),
message_module.ForeignMessage(c=45324),
message_module.ForeignMessage(c=12)],
optional_nested_message=None)
self.assertEqual(24, proto.optional_int32)
self.assertEqual('optional_string', proto.optional_string)
self.assertEqual([1.23, 54.321], list(proto.repeated_double))
self.assertEqual([True, False, False], list(proto.repeated_bool))
self.assertEqual(
[message_module.TestAllTypes.NestedMessage(
bb=message_module.TestAllTypes.FOO),
message_module.TestAllTypes.NestedMessage(
bb=message_module.TestAllTypes.BAR)],
list(proto.repeated_nested_message))
self.assertEqual(
[message_module.ForeignMessage(c=-43),
message_module.ForeignMessage(c=45324),
message_module.ForeignMessage(c=12)],
list(proto.repeated_foreign_message))
self.assertFalse(proto.HasField("optional_nested_message"))
def testConstructorTypeError(self, message_module):
self.assertRaises(
TypeError, message_module.TestAllTypes, optional_int32='foo')
self.assertRaises(
TypeError, message_module.TestAllTypes, optional_string=1234)
self.assertRaises(
TypeError, message_module.TestAllTypes, optional_nested_message=1234)
self.assertRaises(
TypeError, message_module.TestAllTypes, repeated_int32=1234)
self.assertRaises(
TypeError, message_module.TestAllTypes, repeated_int32=['foo'])
self.assertRaises(
TypeError, message_module.TestAllTypes, repeated_string=1234)
self.assertRaises(
TypeError, message_module.TestAllTypes, repeated_string=[1234])
self.assertRaises(
TypeError, message_module.TestAllTypes, repeated_nested_message=1234)
self.assertRaises(
TypeError, message_module.TestAllTypes, repeated_nested_message=[1234])
def testConstructorInvalidatesCachedByteSize(self, message_module):
message = message_module.TestAllTypes(optional_int32=12)
self.assertEqual(2, message.ByteSize())
message = message_module.TestAllTypes(
optional_nested_message=message_module.TestAllTypes.NestedMessage())
self.assertEqual(3, message.ByteSize())
message = message_module.TestAllTypes(repeated_int32=[12])
# TODO(jieluo): Add this test back for proto3
if message_module is unittest_pb2:
self.assertEqual(3, message.ByteSize())
message = message_module.TestAllTypes(
repeated_nested_message=[message_module.TestAllTypes.NestedMessage()])
self.assertEqual(3, message.ByteSize())
def testReferencesToNestedMessage(self, message_module):
proto = message_module.TestAllTypes()
nested = proto.optional_nested_message
del proto
# A previous version had a bug where this would raise an exception when
# hitting a now-dead weak reference.
nested.bb = 23
def testOneOf(self, message_module):
proto = message_module.TestAllTypes()
proto.oneof_uint32 = 10
proto.oneof_nested_message.bb = 11
self.assertEqual(11, proto.oneof_nested_message.bb)
self.assertFalse(proto.HasField('oneof_uint32'))
nested = proto.oneof_nested_message
proto.oneof_string = 'abc'
self.assertEqual('abc', proto.oneof_string)
self.assertEqual(11, nested.bb)
self.assertFalse(proto.HasField('oneof_nested_message'))
def testGetDefaultMessageAfterDisconnectingDefaultMessage(
self, message_module):
proto = message_module.TestAllTypes()
nested = proto.optional_nested_message
proto.ClearField('optional_nested_message')
del proto
del nested
# Force a garbage collect so that the underlying CMessages are freed along
# with the Messages they point to. This is to make sure we're not deleting
# default message instances.
gc.collect()
proto = message_module.TestAllTypes()
nested = proto.optional_nested_message
def testDisconnectingNestedMessageAfterSettingField(self, message_module):
proto = message_module.TestAllTypes()
nested = proto.optional_nested_message
nested.bb = 5
self.assertTrue(proto.HasField('optional_nested_message'))
proto.ClearField('optional_nested_message') # Should disconnect from parent
self.assertEqual(5, nested.bb)
self.assertEqual(0, proto.optional_nested_message.bb)
self.assertIsNot(nested, proto.optional_nested_message)
nested.bb = 23
self.assertFalse(proto.HasField('optional_nested_message'))
self.assertEqual(0, proto.optional_nested_message.bb)
def testDisconnectingNestedMessageBeforeGettingField(self, message_module):
proto = message_module.TestAllTypes()
self.assertFalse(proto.HasField('optional_nested_message'))
proto.ClearField('optional_nested_message')
self.assertFalse(proto.HasField('optional_nested_message'))
def testDisconnectingNestedMessageAfterMerge(self, message_module):
# This test exercises the code path that does not use ReleaseMessage().
# The underlying fear is that if we use ReleaseMessage() incorrectly,
# we will have memory leaks. It's hard to check that that doesn't happen,
# but at least we can exercise that code path to make sure it works.
proto1 = message_module.TestAllTypes()
proto2 = message_module.TestAllTypes()
proto2.optional_nested_message.bb = 5
proto1.MergeFrom(proto2)
self.assertTrue(proto1.HasField('optional_nested_message'))
proto1.ClearField('optional_nested_message')
self.assertFalse(proto1.HasField('optional_nested_message'))
def testDisconnectingLazyNestedMessage(self, message_module):
# This test exercises releasing a nested message that is lazy. This test
# only exercises real code in the C++ implementation as Python does not
# support lazy parsing, but the current C++ implementation results in
# memory corruption and a crash.
if api_implementation.Type() != 'python':
return
proto = message_module.TestAllTypes()
proto.optional_lazy_message.bb = 5
proto.ClearField('optional_lazy_message')
del proto
gc.collect()
def testSingularListFields(self, message_module):
proto = message_module.TestAllTypes()
proto.optional_fixed32 = 1
proto.optional_int32 = 5
proto.optional_string = 'foo'
# Access sub-message but don't set it yet.
nested_message = proto.optional_nested_message
self.assertEqual(
[ (proto.DESCRIPTOR.fields_by_name['optional_int32' ], 5),
(proto.DESCRIPTOR.fields_by_name['optional_fixed32'], 1),
(proto.DESCRIPTOR.fields_by_name['optional_string' ], 'foo') ],
proto.ListFields())
proto.optional_nested_message.bb = 123
self.assertEqual(
[ (proto.DESCRIPTOR.fields_by_name['optional_int32' ], 5),
(proto.DESCRIPTOR.fields_by_name['optional_fixed32'], 1),
(proto.DESCRIPTOR.fields_by_name['optional_string' ], 'foo'),
(proto.DESCRIPTOR.fields_by_name['optional_nested_message' ],
nested_message) ],
proto.ListFields())
def testRepeatedListFields(self, message_module):
proto = message_module.TestAllTypes()
proto.repeated_fixed32.append(1)
proto.repeated_int32.append(5)
proto.repeated_int32.append(11)
proto.repeated_string.extend(['foo', 'bar'])
proto.repeated_string.extend([])
proto.repeated_string.append('baz')
proto.repeated_string.extend(str(x) for x in range(2))
proto.optional_int32 = 21
proto.repeated_bool # Access but don't set anything; should not be listed.
self.assertEqual(
[ (proto.DESCRIPTOR.fields_by_name['optional_int32' ], 21),
(proto.DESCRIPTOR.fields_by_name['repeated_int32' ], [5, 11]),
(proto.DESCRIPTOR.fields_by_name['repeated_fixed32'], [1]),
(proto.DESCRIPTOR.fields_by_name['repeated_string' ],
['foo', 'bar', 'baz', '0', '1']) ],
proto.ListFields())
def testClearFieldWithUnknownFieldName(self, message_module):
proto = message_module.TestAllTypes()
self.assertRaises(ValueError, proto.ClearField, 'nonexistent_field')
self.assertRaises(ValueError, proto.ClearField, b'nonexistent_field')
def testDisallowedAssignments(self, message_module):
# It's illegal to assign values directly to repeated fields
# or to nonrepeated composite fields. Ensure that this fails.
proto = message_module.TestAllTypes()
# Repeated fields.
self.assertRaises(AttributeError, setattr, proto, 'repeated_int32', 10)
# Lists shouldn't work, either.
self.assertRaises(AttributeError, setattr, proto, 'repeated_int32', [10])
# Composite fields.
self.assertRaises(AttributeError, setattr, proto,
'optional_nested_message', 23)
# Assignment to a repeated nested message field without specifying
# the index in the array of nested messages.
self.assertRaises(AttributeError, setattr, proto.repeated_nested_message,
'bb', 34)
# Assignment to an attribute of a repeated field.
self.assertRaises(AttributeError, setattr, proto.repeated_float,
'some_attribute', 34)
# proto.nonexistent_field = 23 should fail as well.
self.assertRaises(AttributeError, setattr, proto, 'nonexistent_field', 23)
def testSingleScalarTypeSafety(self, message_module):
proto = message_module.TestAllTypes()
self.assertRaises(TypeError, setattr, proto, 'optional_int32', 1.1)
self.assertRaises(TypeError, setattr, proto, 'optional_int32', 'foo')
self.assertRaises(TypeError, setattr, proto, 'optional_string', 10)
self.assertRaises(TypeError, setattr, proto, 'optional_bytes', 10)
self.assertRaises(TypeError, setattr, proto, 'optional_bool', 'foo')
self.assertRaises(TypeError, setattr, proto, 'optional_float', 'foo')
self.assertRaises(TypeError, setattr, proto, 'optional_double', 'foo')
# TODO(jieluo): Fix type checking difference for python and c extension
if api_implementation.Type() == 'python':
self.assertRaises(TypeError, setattr, proto, 'optional_bool', 1.1)
else:
proto.optional_bool = 1.1
def assertIntegerTypes(self, integer_fn, message_module):
"""Verifies setting of scalar integers.
Args:
integer_fn: A function to wrap the integers that will be assigned.
message_module: unittest_pb2 or unittest_proto3_arena_pb2
"""
def TestGetAndDeserialize(field_name, value, expected_type):
proto = message_module.TestAllTypes()
value = integer_fn(value)
setattr(proto, field_name, value)
self.assertIsInstance(getattr(proto, field_name), expected_type)
proto2 = message_module.TestAllTypes()
proto2.ParseFromString(proto.SerializeToString())
self.assertIsInstance(getattr(proto2, field_name), expected_type)
TestGetAndDeserialize('optional_int32', 1, int)
TestGetAndDeserialize('optional_int32', 1 << 30, int)
TestGetAndDeserialize('optional_uint32', 1 << 30, int)
integer_64 = long
if struct.calcsize('L') == 4:
# Python only has signed ints, so 32-bit python can't fit an uint32
# in an int.
TestGetAndDeserialize('optional_uint32', 1 << 31, integer_64)
else:
# 64-bit python can fit uint32 inside an int
TestGetAndDeserialize('optional_uint32', 1 << 31, int)
TestGetAndDeserialize('optional_int64', 1 << 30, integer_64)
TestGetAndDeserialize('optional_int64', 1 << 60, integer_64)
TestGetAndDeserialize('optional_uint64', 1 << 30, integer_64)
TestGetAndDeserialize('optional_uint64', 1 << 60, integer_64)
def testIntegerTypes(self, message_module):
self.assertIntegerTypes(lambda x: x, message_module)
def testNonStandardIntegerTypes(self, message_module):
self.assertIntegerTypes(test_util.NonStandardInteger, message_module)
def testIllegalValuesForIntegers(self, message_module):
pb = message_module.TestAllTypes()
# Strings are illegal, even when the represent an integer.
with self.assertRaises(TypeError):
pb.optional_uint64 = '2'
# The exact error should propagate with a poorly written custom integer.
with self.assertRaisesRegexp(RuntimeError, 'my_error'):
pb.optional_uint64 = test_util.NonStandardInteger(5, 'my_error')
def assetIntegerBoundsChecking(self, integer_fn, message_module):
"""Verifies bounds checking for scalar integer fields.
Args:
integer_fn: A function to wrap the integers that will be assigned.
message_module: unittest_pb2 or unittest_proto3_arena_pb2
"""
def TestMinAndMaxIntegers(field_name, expected_min, expected_max):
pb = message_module.TestAllTypes()
expected_min = integer_fn(expected_min)
expected_max = integer_fn(expected_max)
setattr(pb, field_name, expected_min)
self.assertEqual(expected_min, getattr(pb, field_name))
setattr(pb, field_name, expected_max)
self.assertEqual(expected_max, getattr(pb, field_name))
self.assertRaises((ValueError, TypeError), setattr, pb, field_name,
expected_min - 1)
self.assertRaises((ValueError, TypeError), setattr, pb, field_name,
expected_max + 1)
TestMinAndMaxIntegers('optional_int32', -(1 << 31), (1 << 31) - 1)
TestMinAndMaxIntegers('optional_uint32', 0, 0xffffffff)
TestMinAndMaxIntegers('optional_int64', -(1 << 63), (1 << 63) - 1)
TestMinAndMaxIntegers('optional_uint64', 0, 0xffffffffffffffff)
# A bit of white-box testing since -1 is an int and not a long in C++ and
# so goes down a different path.
pb = message_module.TestAllTypes()
with self.assertRaises((ValueError, TypeError)):
pb.optional_uint64 = integer_fn(-(1 << 63))
pb = message_module.TestAllTypes()
pb.optional_nested_enum = integer_fn(1)
self.assertEqual(1, pb.optional_nested_enum)
def testSingleScalarBoundsChecking(self, message_module):
self.assetIntegerBoundsChecking(lambda x: x, message_module)
def testNonStandardSingleScalarBoundsChecking(self, message_module):
self.assetIntegerBoundsChecking(
test_util.NonStandardInteger, message_module)
def testRepeatedScalarTypeSafety(self, message_module):
proto = message_module.TestAllTypes()
self.assertRaises(TypeError, proto.repeated_int32.append, 1.1)
self.assertRaises(TypeError, proto.repeated_int32.append, 'foo')
self.assertRaises(TypeError, proto.repeated_string, 10)
self.assertRaises(TypeError, proto.repeated_bytes, 10)
proto.repeated_int32.append(10)
proto.repeated_int32[0] = 23
self.assertRaises(IndexError, proto.repeated_int32.__setitem__, 500, 23)
self.assertRaises(TypeError, proto.repeated_int32.__setitem__, 0, 'abc')
self.assertRaises(TypeError, proto.repeated_int32.__setitem__, 0, [])
self.assertRaises(TypeError, proto.repeated_int32.__setitem__,
'index', 23)
proto.repeated_string.append('2')
self.assertRaises(TypeError, proto.repeated_string.__setitem__, 0, 10)
# Repeated enums tests.
#proto.repeated_nested_enum.append(0)
def testSingleScalarGettersAndSetters(self, message_module):
proto = message_module.TestAllTypes()
self.assertEqual(0, proto.optional_int32)
proto.optional_int32 = 1
self.assertEqual(1, proto.optional_int32)
proto.optional_uint64 = 0xffffffffffff
self.assertEqual(0xffffffffffff, proto.optional_uint64)
proto.optional_uint64 = 0xffffffffffffffff
self.assertEqual(0xffffffffffffffff, proto.optional_uint64)
# TODO(robinson): Test all other scalar field types.
def testEnums(self, message_module):
proto = message_module.TestAllTypes()
self.assertEqual(1, proto.FOO)
self.assertEqual(1, message_module.TestAllTypes.FOO)
self.assertEqual(2, proto.BAR)
self.assertEqual(2, message_module.TestAllTypes.BAR)
self.assertEqual(3, proto.BAZ)
self.assertEqual(3, message_module.TestAllTypes.BAZ)
def testEnum_Name(self, message_module):
self.assertEqual(
'FOREIGN_FOO',
message_module.ForeignEnum.Name(message_module.FOREIGN_FOO))
self.assertEqual(
'FOREIGN_BAR',
message_module.ForeignEnum.Name(message_module.FOREIGN_BAR))
self.assertEqual(
'FOREIGN_BAZ',
message_module.ForeignEnum.Name(message_module.FOREIGN_BAZ))
self.assertRaises(ValueError,
message_module.ForeignEnum.Name, 11312)
proto = message_module.TestAllTypes()
self.assertEqual('FOO',
proto.NestedEnum.Name(proto.FOO))
self.assertEqual('FOO',
message_module.TestAllTypes.NestedEnum.Name(proto.FOO))
self.assertEqual('BAR',
proto.NestedEnum.Name(proto.BAR))
self.assertEqual('BAR',
message_module.TestAllTypes.NestedEnum.Name(proto.BAR))
self.assertEqual('BAZ',
proto.NestedEnum.Name(proto.BAZ))
self.assertEqual('BAZ',
message_module.TestAllTypes.NestedEnum.Name(proto.BAZ))
self.assertRaises(ValueError,
proto.NestedEnum.Name, 11312)
self.assertRaises(ValueError,
message_module.TestAllTypes.NestedEnum.Name, 11312)
# Check some coercion cases.
self.assertRaises(TypeError, message_module.TestAllTypes.NestedEnum.Name,
11312.0)
self.assertRaises(TypeError, message_module.TestAllTypes.NestedEnum.Name,
None)
self.assertEqual('FOO', message_module.TestAllTypes.NestedEnum.Name(True))
def testEnum_Value(self, message_module):
self.assertEqual(message_module.FOREIGN_FOO,
message_module.ForeignEnum.Value('FOREIGN_FOO'))
self.assertEqual(message_module.FOREIGN_FOO,
message_module.ForeignEnum.FOREIGN_FOO)
self.assertEqual(message_module.FOREIGN_BAR,
message_module.ForeignEnum.Value('FOREIGN_BAR'))
self.assertEqual(message_module.FOREIGN_BAR,
message_module.ForeignEnum.FOREIGN_BAR)
self.assertEqual(message_module.FOREIGN_BAZ,
message_module.ForeignEnum.Value('FOREIGN_BAZ'))
self.assertEqual(message_module.FOREIGN_BAZ,
message_module.ForeignEnum.FOREIGN_BAZ)
self.assertRaises(ValueError,
message_module.ForeignEnum.Value, 'FO')
with self.assertRaises(AttributeError):
message_module.ForeignEnum.FO
proto = message_module.TestAllTypes()
self.assertEqual(proto.FOO,
proto.NestedEnum.Value('FOO'))
self.assertEqual(proto.FOO,
proto.NestedEnum.FOO)
self.assertEqual(proto.FOO,
message_module.TestAllTypes.NestedEnum.Value('FOO'))
self.assertEqual(proto.FOO,
message_module.TestAllTypes.NestedEnum.FOO)
self.assertEqual(proto.BAR,
proto.NestedEnum.Value('BAR'))
self.assertEqual(proto.BAR,
proto.NestedEnum.BAR)
self.assertEqual(proto.BAR,
message_module.TestAllTypes.NestedEnum.Value('BAR'))
self.assertEqual(proto.BAR,
message_module.TestAllTypes.NestedEnum.BAR)
self.assertEqual(proto.BAZ,
proto.NestedEnum.Value('BAZ'))
self.assertEqual(proto.BAZ,
proto.NestedEnum.BAZ)
self.assertEqual(proto.BAZ,
message_module.TestAllTypes.NestedEnum.Value('BAZ'))
self.assertEqual(proto.BAZ,
message_module.TestAllTypes.NestedEnum.BAZ)
self.assertRaises(ValueError,
proto.NestedEnum.Value, 'Foo')
with self.assertRaises(AttributeError):
proto.NestedEnum.Value.Foo
self.assertRaises(ValueError,
message_module.TestAllTypes.NestedEnum.Value, 'Foo')
with self.assertRaises(AttributeError):
message_module.TestAllTypes.NestedEnum.Value.Foo
def testEnum_KeysAndValues(self, message_module):
if message_module == unittest_pb2:
keys = ['FOREIGN_FOO', 'FOREIGN_BAR', 'FOREIGN_BAZ']
values = [4, 5, 6]
items = [('FOREIGN_FOO', 4), ('FOREIGN_BAR', 5), ('FOREIGN_BAZ', 6)]
else:
keys = ['FOREIGN_ZERO', 'FOREIGN_FOO', 'FOREIGN_BAR', 'FOREIGN_BAZ']
values = [0, 4, 5, 6]
items = [('FOREIGN_ZERO', 0), ('FOREIGN_FOO', 4),
('FOREIGN_BAR', 5), ('FOREIGN_BAZ', 6)]
self.assertEqual(keys,
list(message_module.ForeignEnum.keys()))
self.assertEqual(values,
list(message_module.ForeignEnum.values()))
self.assertEqual(items,
list(message_module.ForeignEnum.items()))
proto = message_module.TestAllTypes()
if message_module == unittest_pb2:
keys = ['FOO', 'BAR', 'BAZ', 'NEG']
values = [1, 2, 3, -1]
items = [('FOO', 1), ('BAR', 2), ('BAZ', 3), ('NEG', -1)]
else:
keys = ['ZERO', 'FOO', 'BAR', 'BAZ', 'NEG']
values = [0, 1, 2, 3, -1]
items = [('ZERO', 0), ('FOO', 1), ('BAR', 2), ('BAZ', 3), ('NEG', -1)]
self.assertEqual(keys, list(proto.NestedEnum.keys()))
self.assertEqual(values, list(proto.NestedEnum.values()))
self.assertEqual(items,
list(proto.NestedEnum.items()))
def testStaticParseFrom(self, message_module):
proto1 = message_module.TestAllTypes()
test_util.SetAllFields(proto1)
string1 = proto1.SerializeToString()
proto2 = message_module.TestAllTypes.FromString(string1)
# Messages should be equal.
self.assertEqual(proto2, proto1)
def testMergeFromSingularField(self, message_module):
# Test merge with just a singular field.
proto1 = message_module.TestAllTypes()
proto1.optional_int32 = 1
proto2 = message_module.TestAllTypes()
# This shouldn't get overwritten.
proto2.optional_string = 'value'
proto2.MergeFrom(proto1)
self.assertEqual(1, proto2.optional_int32)
self.assertEqual('value', proto2.optional_string)
def testMergeFromRepeatedField(self, message_module):
# Test merge with just a repeated field.
proto1 = message_module.TestAllTypes()
proto1.repeated_int32.append(1)
proto1.repeated_int32.append(2)
proto2 = message_module.TestAllTypes()
proto2.repeated_int32.append(0)
proto2.MergeFrom(proto1)
self.assertEqual(0, proto2.repeated_int32[0])
self.assertEqual(1, proto2.repeated_int32[1])
self.assertEqual(2, proto2.repeated_int32[2])
def testMergeFromRepeatedNestedMessage(self, message_module):
# Test merge with a repeated nested message.
proto1 = message_module.TestAllTypes()
m = proto1.repeated_nested_message.add()
m.bb = 123
m = proto1.repeated_nested_message.add()
m.bb = 321
proto2 = message_module.TestAllTypes()
m = proto2.repeated_nested_message.add()
m.bb = 999
proto2.MergeFrom(proto1)
self.assertEqual(999, proto2.repeated_nested_message[0].bb)
self.assertEqual(123, proto2.repeated_nested_message[1].bb)
self.assertEqual(321, proto2.repeated_nested_message[2].bb)
proto3 = message_module.TestAllTypes()
proto3.repeated_nested_message.MergeFrom(proto2.repeated_nested_message)
self.assertEqual(999, proto3.repeated_nested_message[0].bb)
self.assertEqual(123, proto3.repeated_nested_message[1].bb)
self.assertEqual(321, proto3.repeated_nested_message[2].bb)
def testMergeFromAllFields(self, message_module):
# With all fields set.
proto1 = message_module.TestAllTypes()
test_util.SetAllFields(proto1)
proto2 = message_module.TestAllTypes()
proto2.MergeFrom(proto1)
# Messages should be equal.
self.assertEqual(proto2, proto1)
# Serialized string should be equal too.
string1 = proto1.SerializeToString()
string2 = proto2.SerializeToString()
self.assertEqual(string1, string2)
def testMergeFromBug(self, message_module):
message1 = message_module.TestAllTypes()
message2 = message_module.TestAllTypes()
# Cause optional_nested_message to be instantiated within message1, even
# though it is not considered to be "present".
message1.optional_nested_message
self.assertFalse(message1.HasField('optional_nested_message'))
# Merge into message2. This should not instantiate the field is message2.
message2.MergeFrom(message1)
self.assertFalse(message2.HasField('optional_nested_message'))
def testCopyFromSingularField(self, message_module):
# Test copy with just a singular field.
proto1 = message_module.TestAllTypes()
proto1.optional_int32 = 1
proto1.optional_string = 'important-text'
proto2 = message_module.TestAllTypes()
proto2.optional_string = 'value'
proto2.CopyFrom(proto1)
self.assertEqual(1, proto2.optional_int32)
self.assertEqual('important-text', proto2.optional_string)
def testCopyFromRepeatedField(self, message_module):
# Test copy with a repeated field.
proto1 = message_module.TestAllTypes()
proto1.repeated_int32.append(1)
proto1.repeated_int32.append(2)
proto2 = message_module.TestAllTypes()
proto2.repeated_int32.append(0)
proto2.CopyFrom(proto1)
self.assertEqual(1, proto2.repeated_int32[0])
self.assertEqual(2, proto2.repeated_int32[1])
def testCopyFromAllFields(self, message_module):
# With all fields set.
proto1 = message_module.TestAllTypes()
test_util.SetAllFields(proto1)
proto2 = message_module.TestAllTypes()
proto2.CopyFrom(proto1)
# Messages should be equal.
self.assertEqual(proto2, proto1)
# Serialized string should be equal too.
string1 = proto1.SerializeToString()
string2 = proto2.SerializeToString()
self.assertEqual(string1, string2)
def testCopyFromSelf(self, message_module):
proto1 = message_module.TestAllTypes()
proto1.repeated_int32.append(1)
proto1.optional_int32 = 2
proto1.optional_string = 'important-text'
proto1.CopyFrom(proto1)
self.assertEqual(1, proto1.repeated_int32[0])
self.assertEqual(2, proto1.optional_int32)
self.assertEqual('important-text', proto1.optional_string)
def testDeepCopy(self, message_module):
proto1 = message_module.TestAllTypes()
proto1.optional_int32 = 1
proto2 = copy.deepcopy(proto1)
self.assertEqual(1, proto2.optional_int32)
proto1.repeated_int32.append(2)
proto1.repeated_int32.append(3)
container = copy.deepcopy(proto1.repeated_int32)
self.assertEqual([2, 3], container)
container.remove(container[0])
self.assertEqual([3], container)
message1 = proto1.repeated_nested_message.add()
message1.bb = 1
messages = copy.deepcopy(proto1.repeated_nested_message)
self.assertEqual(proto1.repeated_nested_message, messages)
message1.bb = 2
self.assertNotEqual(proto1.repeated_nested_message, messages)
messages.remove(messages[0])
self.assertEqual(len(messages), 0)
# TODO(anuraag): Implement deepcopy for extension dict
def testDisconnectingBeforeClear(self, message_module):
proto = message_module.TestAllTypes()
nested = proto.optional_nested_message
proto.Clear()
self.assertIsNot(nested, proto.optional_nested_message)
nested.bb = 23
self.assertFalse(proto.HasField('optional_nested_message'))
self.assertEqual(0, proto.optional_nested_message.bb)
proto = message_module.TestAllTypes()
nested = proto.optional_nested_message
nested.bb = 5
foreign = proto.optional_foreign_message
foreign.c = 6
proto.Clear()
self.assertIsNot(nested, proto.optional_nested_message)
self.assertIsNot(foreign, proto.optional_foreign_message)
self.assertEqual(5, nested.bb)
self.assertEqual(6, foreign.c)
nested.bb = 15
foreign.c = 16
self.assertFalse(proto.HasField('optional_nested_message'))
self.assertEqual(0, proto.optional_nested_message.bb)
self.assertFalse(proto.HasField('optional_foreign_message'))
self.assertEqual(0, proto.optional_foreign_message.c)
def testStringUTF8Encoding(self, message_module):
proto = message_module.TestAllTypes()
# Assignment of a unicode object to a field of type 'bytes' is not allowed.
self.assertRaises(TypeError,
setattr, proto, 'optional_bytes', u'unicode object')
# Check that the default value is of python's 'unicode' type.
self.assertEqual(type(proto.optional_string), six.text_type)
proto.optional_string = six.text_type('Testing')
self.assertEqual(proto.optional_string, str('Testing'))
# Assign a value of type 'str' which can be encoded in UTF-8.
proto.optional_string = str('Testing')
self.assertEqual(proto.optional_string, six.text_type('Testing'))
# Try to assign a 'bytes' object which contains non-UTF-8.
self.assertRaises(ValueError,
setattr, proto, 'optional_string', b'a\x80a')
# No exception: Assign already encoded UTF-8 bytes to a string field.
utf8_bytes = u'Тест'.encode('utf-8')
proto.optional_string = utf8_bytes
# No exception: Assign the a non-ascii unicode object.
proto.optional_string = u'Тест'
# No exception thrown (normal str assignment containing ASCII).
proto.optional_string = 'abc'
def testBytesInTextFormat(self, message_module):
proto = message_module.TestAllTypes(optional_bytes=b'\x00\x7f\x80\xff')
self.assertEqual(u'optional_bytes: "\\000\\177\\200\\377"\n',
six.text_type(proto))
def testEmptyNestedMessage(self, message_module):
proto = message_module.TestAllTypes()
proto.optional_nested_message.MergeFrom(
message_module.TestAllTypes.NestedMessage())
self.assertTrue(proto.HasField('optional_nested_message'))
proto = message_module.TestAllTypes()
proto.optional_nested_message.CopyFrom(
message_module.TestAllTypes.NestedMessage())
self.assertTrue(proto.HasField('optional_nested_message'))
proto = message_module.TestAllTypes()
bytes_read = proto.optional_nested_message.MergeFromString(b'')
self.assertEqual(0, bytes_read)
self.assertTrue(proto.HasField('optional_nested_message'))
proto = message_module.TestAllTypes()
proto.optional_nested_message.ParseFromString(b'')
self.assertTrue(proto.HasField('optional_nested_message'))
serialized = proto.SerializeToString()
proto2 = message_module.TestAllTypes()
self.assertEqual(
len(serialized),
proto2.MergeFromString(serialized))
self.assertTrue(proto2.HasField('optional_nested_message'))
# Class to test proto2-only features (required, extensions, etc.)
@testing_refleaks.TestCase
class Proto2ReflectionTest(unittest.TestCase):
def testRepeatedCompositeConstructor(self):
# Constructor with only repeated composite types should succeed.
proto = unittest_pb2.TestAllTypes(
repeated_nested_message=[
unittest_pb2.TestAllTypes.NestedMessage(
bb=unittest_pb2.TestAllTypes.FOO),
unittest_pb2.TestAllTypes.NestedMessage(
bb=unittest_pb2.TestAllTypes.BAR)],
repeated_foreign_message=[
unittest_pb2.ForeignMessage(c=-43),
unittest_pb2.ForeignMessage(c=45324),
unittest_pb2.ForeignMessage(c=12)],
repeatedgroup=[
unittest_pb2.TestAllTypes.RepeatedGroup(),
unittest_pb2.TestAllTypes.RepeatedGroup(a=1),
unittest_pb2.TestAllTypes.RepeatedGroup(a=2)])
self.assertEqual(
[unittest_pb2.TestAllTypes.NestedMessage(
bb=unittest_pb2.TestAllTypes.FOO),
unittest_pb2.TestAllTypes.NestedMessage(
bb=unittest_pb2.TestAllTypes.BAR)],
list(proto.repeated_nested_message))
self.assertEqual(
[unittest_pb2.ForeignMessage(c=-43),
unittest_pb2.ForeignMessage(c=45324),
unittest_pb2.ForeignMessage(c=12)],
list(proto.repeated_foreign_message))
self.assertEqual(
[unittest_pb2.TestAllTypes.RepeatedGroup(),
unittest_pb2.TestAllTypes.RepeatedGroup(a=1),
unittest_pb2.TestAllTypes.RepeatedGroup(a=2)],
list(proto.repeatedgroup))
def assertListsEqual(self, values, others):
self.assertEqual(len(values), len(others))
for i in range(len(values)):
self.assertEqual(values[i], others[i])
def testSimpleHasBits(self):
# Test a scalar.
proto = unittest_pb2.TestAllTypes()
self.assertFalse(proto.HasField('optional_int32'))
self.assertEqual(0, proto.optional_int32)
# HasField() shouldn't be true if all we've done is
# read the default value.
self.assertFalse(proto.HasField('optional_int32'))
proto.optional_int32 = 1
# Setting a value however *should* set the "has" bit.
self.assertTrue(proto.HasField('optional_int32'))
proto.ClearField('optional_int32')
# And clearing that value should unset the "has" bit.
self.assertFalse(proto.HasField('optional_int32'))
def testHasBitsWithSinglyNestedScalar(self):
# Helper used to test foreign messages and groups.
#
# composite_field_name should be the name of a non-repeated
# composite (i.e., foreign or group) field in TestAllTypes,
# and scalar_field_name should be the name of an integer-valued
# scalar field within that composite.
#
# I never thought I'd miss C++ macros and templates so much. :(
# This helper is semantically just:
#
# assert proto.composite_field.scalar_field == 0
# assert not proto.composite_field.HasField('scalar_field')
# assert not proto.HasField('composite_field')
#
# proto.composite_field.scalar_field = 10
# old_composite_field = proto.composite_field
#
# assert proto.composite_field.scalar_field == 10
# assert proto.composite_field.HasField('scalar_field')
# assert proto.HasField('composite_field')
#
# proto.ClearField('composite_field')
#
# assert not proto.composite_field.HasField('scalar_field')
# assert not proto.HasField('composite_field')
# assert proto.composite_field.scalar_field == 0
#
# # Now ensure that ClearField('composite_field') disconnected
# # the old field object from the object tree...
# assert old_composite_field is not proto.composite_field
# old_composite_field.scalar_field = 20
# assert not proto.composite_field.HasField('scalar_field')
# assert not proto.HasField('composite_field')
def TestCompositeHasBits(composite_field_name, scalar_field_name):
proto = unittest_pb2.TestAllTypes()
# First, check that we can get the scalar value, and see that it's the
# default (0), but that proto.HasField('omposite') and
# proto.composite.HasField('scalar') will still return False.
composite_field = getattr(proto, composite_field_name)
original_scalar_value = getattr(composite_field, scalar_field_name)
self.assertEqual(0, original_scalar_value)
# Assert that the composite object does not "have" the scalar.
self.assertFalse(composite_field.HasField(scalar_field_name))
# Assert that proto does not "have" the composite field.
self.assertFalse(proto.HasField(composite_field_name))
# Now set the scalar within the composite field. Ensure that the setting
# is reflected, and that proto.HasField('composite') and
# proto.composite.HasField('scalar') now both return True.
new_val = 20
setattr(composite_field, scalar_field_name, new_val)
self.assertEqual(new_val, getattr(composite_field, scalar_field_name))
# Hold on to a reference to the current composite_field object.
old_composite_field = composite_field
# Assert that the has methods now return true.
self.assertTrue(composite_field.HasField(scalar_field_name))
self.assertTrue(proto.HasField(composite_field_name))
# Now call the clear method...
proto.ClearField(composite_field_name)
# ...and ensure that the "has" bits are all back to False...
composite_field = getattr(proto, composite_field_name)
self.assertFalse(composite_field.HasField(scalar_field_name))
self.assertFalse(proto.HasField(composite_field_name))
# ...and ensure that the scalar field has returned to its default.
self.assertEqual(0, getattr(composite_field, scalar_field_name))
self.assertIsNot(old_composite_field, composite_field)
setattr(old_composite_field, scalar_field_name, new_val)
self.assertFalse(composite_field.HasField(scalar_field_name))
self.assertFalse(proto.HasField(composite_field_name))
self.assertEqual(0, getattr(composite_field, scalar_field_name))
# Test simple, single-level nesting when we set a scalar.
TestCompositeHasBits('optionalgroup', 'a')
TestCompositeHasBits('optional_nested_message', 'bb')
TestCompositeHasBits('optional_foreign_message', 'c')
TestCompositeHasBits('optional_import_message', 'd')
def testHasBitsWhenModifyingRepeatedFields(self):
# Test nesting when we add an element to a repeated field in a submessage.
proto = unittest_pb2.TestNestedMessageHasBits()
proto.optional_nested_message.nestedmessage_repeated_int32.append(5)
self.assertEqual(
[5], proto.optional_nested_message.nestedmessage_repeated_int32)
self.assertTrue(proto.HasField('optional_nested_message'))
# Do the same test, but with a repeated composite field within the
# submessage.
proto.ClearField('optional_nested_message')
self.assertFalse(proto.HasField('optional_nested_message'))
proto.optional_nested_message.nestedmessage_repeated_foreignmessage.add()
self.assertTrue(proto.HasField('optional_nested_message'))
def testHasBitsForManyLevelsOfNesting(self):
# Test nesting many levels deep.
recursive_proto = unittest_pb2.TestMutualRecursionA()
self.assertFalse(recursive_proto.HasField('bb'))
self.assertEqual(0, recursive_proto.bb.a.bb.a.bb.optional_int32)
self.assertFalse(recursive_proto.HasField('bb'))
recursive_proto.bb.a.bb.a.bb.optional_int32 = 5
self.assertEqual(5, recursive_proto.bb.a.bb.a.bb.optional_int32)
self.assertTrue(recursive_proto.HasField('bb'))
self.assertTrue(recursive_proto.bb.HasField('a'))
self.assertTrue(recursive_proto.bb.a.HasField('bb'))
self.assertTrue(recursive_proto.bb.a.bb.HasField('a'))
self.assertTrue(recursive_proto.bb.a.bb.a.HasField('bb'))
self.assertFalse(recursive_proto.bb.a.bb.a.bb.HasField('a'))
self.assertTrue(recursive_proto.bb.a.bb.a.bb.HasField('optional_int32'))
def testSingularListExtensions(self):
proto = unittest_pb2.TestAllExtensions()
proto.Extensions[unittest_pb2.optional_fixed32_extension] = 1
proto.Extensions[unittest_pb2.optional_int32_extension ] = 5
proto.Extensions[unittest_pb2.optional_string_extension ] = 'foo'
self.assertEqual(
[ (unittest_pb2.optional_int32_extension , 5),
(unittest_pb2.optional_fixed32_extension, 1),
(unittest_pb2.optional_string_extension , 'foo') ],
proto.ListFields())
del proto.Extensions[unittest_pb2.optional_fixed32_extension]
self.assertEqual(
[(unittest_pb2.optional_int32_extension, 5),
(unittest_pb2.optional_string_extension, 'foo')],
proto.ListFields())
def testRepeatedListExtensions(self):
proto = unittest_pb2.TestAllExtensions()
proto.Extensions[unittest_pb2.repeated_fixed32_extension].append(1)
proto.Extensions[unittest_pb2.repeated_int32_extension ].append(5)
proto.Extensions[unittest_pb2.repeated_int32_extension ].append(11)
proto.Extensions[unittest_pb2.repeated_string_extension ].append('foo')
proto.Extensions[unittest_pb2.repeated_string_extension ].append('bar')
proto.Extensions[unittest_pb2.repeated_string_extension ].append('baz')
proto.Extensions[unittest_pb2.optional_int32_extension ] = 21
self.assertEqual(
[ (unittest_pb2.optional_int32_extension , 21),
(unittest_pb2.repeated_int32_extension , [5, 11]),
(unittest_pb2.repeated_fixed32_extension, [1]),
(unittest_pb2.repeated_string_extension , ['foo', 'bar', 'baz']) ],
proto.ListFields())
del proto.Extensions[unittest_pb2.repeated_int32_extension]
del proto.Extensions[unittest_pb2.repeated_string_extension]
self.assertEqual(
[(unittest_pb2.optional_int32_extension, 21),
(unittest_pb2.repeated_fixed32_extension, [1])],
proto.ListFields())
def testListFieldsAndExtensions(self):
proto = unittest_pb2.TestFieldOrderings()
test_util.SetAllFieldsAndExtensions(proto)
unittest_pb2.my_extension_int
self.assertEqual(
[ (proto.DESCRIPTOR.fields_by_name['my_int' ], 1),
(unittest_pb2.my_extension_int , 23),
(proto.DESCRIPTOR.fields_by_name['my_string'], 'foo'),
(unittest_pb2.my_extension_string , 'bar'),
(proto.DESCRIPTOR.fields_by_name['my_float' ], 1.0) ],
proto.ListFields())
def testDefaultValues(self):
proto = unittest_pb2.TestAllTypes()
self.assertEqual(0, proto.optional_int32)
self.assertEqual(0, proto.optional_int64)
self.assertEqual(0, proto.optional_uint32)
self.assertEqual(0, proto.optional_uint64)
self.assertEqual(0, proto.optional_sint32)
self.assertEqual(0, proto.optional_sint64)
self.assertEqual(0, proto.optional_fixed32)
self.assertEqual(0, proto.optional_fixed64)
self.assertEqual(0, proto.optional_sfixed32)
self.assertEqual(0, proto.optional_sfixed64)
self.assertEqual(0.0, proto.optional_float)
self.assertEqual(0.0, proto.optional_double)
self.assertEqual(False, proto.optional_bool)
self.assertEqual('', proto.optional_string)
self.assertEqual(b'', proto.optional_bytes)
self.assertEqual(41, proto.default_int32)
self.assertEqual(42, proto.default_int64)
self.assertEqual(43, proto.default_uint32)
self.assertEqual(44, proto.default_uint64)
self.assertEqual(-45, proto.default_sint32)
self.assertEqual(46, proto.default_sint64)
self.assertEqual(47, proto.default_fixed32)
self.assertEqual(48, proto.default_fixed64)
self.assertEqual(49, proto.default_sfixed32)
self.assertEqual(-50, proto.default_sfixed64)
self.assertEqual(51.5, proto.default_float)
self.assertEqual(52e3, proto.default_double)
self.assertEqual(True, proto.default_bool)
self.assertEqual('hello', proto.default_string)
self.assertEqual(b'world', proto.default_bytes)
self.assertEqual(unittest_pb2.TestAllTypes.BAR, proto.default_nested_enum)
self.assertEqual(unittest_pb2.FOREIGN_BAR, proto.default_foreign_enum)
self.assertEqual(unittest_import_pb2.IMPORT_BAR,
proto.default_import_enum)
proto = unittest_pb2.TestExtremeDefaultValues()
self.assertEqual(u'\u1234', proto.utf8_string)
def testHasFieldWithUnknownFieldName(self):
proto = unittest_pb2.TestAllTypes()
self.assertRaises(ValueError, proto.HasField, 'nonexistent_field')
def testClearRemovesChildren(self):
# Make sure there aren't any implementation bugs that are only partially
# clearing the message (which can happen in the more complex C++
# implementation which has parallel message lists).
proto = unittest_pb2.TestRequiredForeign()
for i in range(10):
proto.repeated_message.add()
proto2 = unittest_pb2.TestRequiredForeign()
proto.CopyFrom(proto2)
self.assertRaises(IndexError, lambda: proto.repeated_message[5])
def testSingleScalarClearField(self):
proto = unittest_pb2.TestAllTypes()
# Should be allowed to clear something that's not there (a no-op).
proto.ClearField('optional_int32')
proto.optional_int32 = 1
self.assertTrue(proto.HasField('optional_int32'))
proto.ClearField('optional_int32')
self.assertEqual(0, proto.optional_int32)
self.assertFalse(proto.HasField('optional_int32'))
# TODO(robinson): Test all other scalar field types.
def testRepeatedScalars(self):
proto = unittest_pb2.TestAllTypes()
self.assertFalse(proto.repeated_int32)
self.assertEqual(0, len(proto.repeated_int32))
proto.repeated_int32.append(5)
proto.repeated_int32.append(10)
proto.repeated_int32.append(15)
self.assertTrue(proto.repeated_int32)
self.assertEqual(3, len(proto.repeated_int32))
self.assertEqual([5, 10, 15], proto.repeated_int32)
# Test single retrieval.
self.assertEqual(5, proto.repeated_int32[0])
self.assertEqual(15, proto.repeated_int32[-1])
# Test out-of-bounds indices.
self.assertRaises(IndexError, proto.repeated_int32.__getitem__, 1234)
self.assertRaises(IndexError, proto.repeated_int32.__getitem__, -1234)
# Test incorrect types passed to __getitem__.
self.assertRaises(TypeError, proto.repeated_int32.__getitem__, 'foo')
self.assertRaises(TypeError, proto.repeated_int32.__getitem__, None)
# Test single assignment.
proto.repeated_int32[1] = 20
self.assertEqual([5, 20, 15], proto.repeated_int32)
# Test insertion.
proto.repeated_int32.insert(1, 25)
self.assertEqual([5, 25, 20, 15], proto.repeated_int32)
# Test slice retrieval.
proto.repeated_int32.append(30)
self.assertEqual([25, 20, 15], proto.repeated_int32[1:4])
self.assertEqual([5, 25, 20, 15, 30], proto.repeated_int32[:])
# Test slice assignment with an iterator
proto.repeated_int32[1:4] = (i for i in range(3))
self.assertEqual([5, 0, 1, 2, 30], proto.repeated_int32)
# Test slice assignment.
proto.repeated_int32[1:4] = [35, 40, 45]
self.assertEqual([5, 35, 40, 45, 30], proto.repeated_int32)
# Test that we can use the field as an iterator.
result = []
for i in proto.repeated_int32:
result.append(i)
self.assertEqual([5, 35, 40, 45, 30], result)
# Test single deletion.
del proto.repeated_int32[2]
self.assertEqual([5, 35, 45, 30], proto.repeated_int32)
# Test slice deletion.
del proto.repeated_int32[2:]
self.assertEqual([5, 35], proto.repeated_int32)
# Test extending.
proto.repeated_int32.extend([3, 13])
self.assertEqual([5, 35, 3, 13], proto.repeated_int32)
# Test clearing.
proto.ClearField('repeated_int32')
self.assertFalse(proto.repeated_int32)
self.assertEqual(0, len(proto.repeated_int32))
proto.repeated_int32.append(1)
self.assertEqual(1, proto.repeated_int32[-1])
# Test assignment to a negative index.
proto.repeated_int32[-1] = 2
self.assertEqual(2, proto.repeated_int32[-1])
# Test deletion at negative indices.
proto.repeated_int32[:] = [0, 1, 2, 3]
del proto.repeated_int32[-1]
self.assertEqual([0, 1, 2], proto.repeated_int32)
del proto.repeated_int32[-2]
self.assertEqual([0, 2], proto.repeated_int32)
self.assertRaises(IndexError, proto.repeated_int32.__delitem__, -3)
self.assertRaises(IndexError, proto.repeated_int32.__delitem__, 300)
del proto.repeated_int32[-2:-1]
self.assertEqual([2], proto.repeated_int32)
del proto.repeated_int32[100:10000]
self.assertEqual([2], proto.repeated_int32)
def testRepeatedScalarsRemove(self):
proto = unittest_pb2.TestAllTypes()
self.assertFalse(proto.repeated_int32)
self.assertEqual(0, len(proto.repeated_int32))
proto.repeated_int32.append(5)
proto.repeated_int32.append(10)
proto.repeated_int32.append(5)
proto.repeated_int32.append(5)
self.assertEqual(4, len(proto.repeated_int32))
proto.repeated_int32.remove(5)
self.assertEqual(3, len(proto.repeated_int32))
self.assertEqual(10, proto.repeated_int32[0])
self.assertEqual(5, proto.repeated_int32[1])
self.assertEqual(5, proto.repeated_int32[2])
proto.repeated_int32.remove(5)
self.assertEqual(2, len(proto.repeated_int32))
self.assertEqual(10, proto.repeated_int32[0])
self.assertEqual(5, proto.repeated_int32[1])
proto.repeated_int32.remove(10)
self.assertEqual(1, len(proto.repeated_int32))
self.assertEqual(5, proto.repeated_int32[0])
# Remove a non-existent element.
self.assertRaises(ValueError, proto.repeated_int32.remove, 123)
def testRepeatedComposites(self):
proto = unittest_pb2.TestAllTypes()
self.assertFalse(proto.repeated_nested_message)
self.assertEqual(0, len(proto.repeated_nested_message))
m0 = proto.repeated_nested_message.add()
m1 = proto.repeated_nested_message.add()
self.assertTrue(proto.repeated_nested_message)
self.assertEqual(2, len(proto.repeated_nested_message))
self.assertListsEqual([m0, m1], proto.repeated_nested_message)
self.assertIsInstance(m0, unittest_pb2.TestAllTypes.NestedMessage)
# Test out-of-bounds indices.
self.assertRaises(IndexError, proto.repeated_nested_message.__getitem__,
1234)
self.assertRaises(IndexError, proto.repeated_nested_message.__getitem__,
-1234)
# Test incorrect types passed to __getitem__.
self.assertRaises(TypeError, proto.repeated_nested_message.__getitem__,
'foo')
self.assertRaises(TypeError, proto.repeated_nested_message.__getitem__,
None)
# Test slice retrieval.
m2 = proto.repeated_nested_message.add()
m3 = proto.repeated_nested_message.add()
m4 = proto.repeated_nested_message.add()
self.assertListsEqual(
[m1, m2, m3], proto.repeated_nested_message[1:4])
self.assertListsEqual(
[m0, m1, m2, m3, m4], proto.repeated_nested_message[:])
self.assertListsEqual(
[m0, m1], proto.repeated_nested_message[:2])
self.assertListsEqual(
[m2, m3, m4], proto.repeated_nested_message[2:])
self.assertEqual(
m0, proto.repeated_nested_message[0])
self.assertListsEqual(
[m0], proto.repeated_nested_message[:1])
# Test that we can use the field as an iterator.
result = []
for i in proto.repeated_nested_message:
result.append(i)
self.assertListsEqual([m0, m1, m2, m3, m4], result)
# Test single deletion.
del proto.repeated_nested_message[2]
self.assertListsEqual([m0, m1, m3, m4], proto.repeated_nested_message)
# Test slice deletion.
del proto.repeated_nested_message[2:]
self.assertListsEqual([m0, m1], proto.repeated_nested_message)
# Test extending.
n1 = unittest_pb2.TestAllTypes.NestedMessage(bb=1)
n2 = unittest_pb2.TestAllTypes.NestedMessage(bb=2)
proto.repeated_nested_message.extend([n1,n2])
self.assertEqual(4, len(proto.repeated_nested_message))
self.assertEqual(n1, proto.repeated_nested_message[2])
self.assertEqual(n2, proto.repeated_nested_message[3])
self.assertRaises(TypeError,
proto.repeated_nested_message.extend, n1)
self.assertRaises(TypeError,
proto.repeated_nested_message.extend, [0])
wrong_message_type = unittest_pb2.TestAllTypes()
self.assertRaises(TypeError,
proto.repeated_nested_message.extend,
[wrong_message_type])
# Test clearing.
proto.ClearField('repeated_nested_message')
self.assertFalse(proto.repeated_nested_message)
self.assertEqual(0, len(proto.repeated_nested_message))
# Test constructing an element while adding it.
proto.repeated_nested_message.add(bb=23)
self.assertEqual(1, len(proto.repeated_nested_message))
self.assertEqual(23, proto.repeated_nested_message[0].bb)
self.assertRaises(TypeError, proto.repeated_nested_message.add, 23)
with self.assertRaises(Exception):
proto.repeated_nested_message[0] = 23
def testRepeatedCompositeRemove(self):
proto = unittest_pb2.TestAllTypes()
self.assertEqual(0, len(proto.repeated_nested_message))
m0 = proto.repeated_nested_message.add()
# Need to set some differentiating variable so m0 != m1 != m2:
m0.bb = len(proto.repeated_nested_message)
m1 = proto.repeated_nested_message.add()
m1.bb = len(proto.repeated_nested_message)
self.assertTrue(m0 != m1)
m2 = proto.repeated_nested_message.add()
m2.bb = len(proto.repeated_nested_message)
self.assertListsEqual([m0, m1, m2], proto.repeated_nested_message)
self.assertEqual(3, len(proto.repeated_nested_message))
proto.repeated_nested_message.remove(m0)
self.assertEqual(2, len(proto.repeated_nested_message))
self.assertEqual(m1, proto.repeated_nested_message[0])
self.assertEqual(m2, proto.repeated_nested_message[1])
# Removing m0 again or removing None should raise error
self.assertRaises(ValueError, proto.repeated_nested_message.remove, m0)
self.assertRaises(ValueError, proto.repeated_nested_message.remove, None)
self.assertEqual(2, len(proto.repeated_nested_message))
proto.repeated_nested_message.remove(m2)
self.assertEqual(1, len(proto.repeated_nested_message))
self.assertEqual(m1, proto.repeated_nested_message[0])
def testHandWrittenReflection(self):
# Hand written extensions are only supported by the pure-Python
# implementation of the API.
if api_implementation.Type() != 'python':
return
FieldDescriptor = descriptor.FieldDescriptor
foo_field_descriptor = FieldDescriptor(
name='foo_field', full_name='MyProto.foo_field',
index=0, number=1, type=FieldDescriptor.TYPE_INT64,
cpp_type=FieldDescriptor.CPPTYPE_INT64,
label=FieldDescriptor.LABEL_OPTIONAL, default_value=0,
containing_type=None, message_type=None, enum_type=None,
is_extension=False, extension_scope=None,
options=descriptor_pb2.FieldOptions(),
# pylint: disable=protected-access
create_key=descriptor._internal_create_key)
mydescriptor = descriptor.Descriptor(
name='MyProto', full_name='MyProto', filename='ignored',
containing_type=None, nested_types=[], enum_types=[],
fields=[foo_field_descriptor], extensions=[],
options=descriptor_pb2.MessageOptions(),
# pylint: disable=protected-access
create_key=descriptor._internal_create_key)
class MyProtoClass(six.with_metaclass(reflection.GeneratedProtocolMessageType, message.Message)):
DESCRIPTOR = mydescriptor
myproto_instance = MyProtoClass()
self.assertEqual(0, myproto_instance.foo_field)
self.assertFalse(myproto_instance.HasField('foo_field'))
myproto_instance.foo_field = 23
self.assertEqual(23, myproto_instance.foo_field)
self.assertTrue(myproto_instance.HasField('foo_field'))
@testing_refleaks.SkipReferenceLeakChecker('MakeDescriptor is not repeatable')
def testDescriptorProtoSupport(self):
# Hand written descriptors/reflection are only supported by the pure-Python
# implementation of the API.
if api_implementation.Type() != 'python':
return
def AddDescriptorField(proto, field_name, field_type):
AddDescriptorField.field_index += 1
new_field = proto.field.add()
new_field.name = field_name
new_field.type = field_type
new_field.number = AddDescriptorField.field_index
new_field.label = descriptor_pb2.FieldDescriptorProto.LABEL_OPTIONAL
AddDescriptorField.field_index = 0
desc_proto = descriptor_pb2.DescriptorProto()
desc_proto.name = 'Car'
fdp = descriptor_pb2.FieldDescriptorProto
AddDescriptorField(desc_proto, 'name', fdp.TYPE_STRING)
AddDescriptorField(desc_proto, 'year', fdp.TYPE_INT64)
AddDescriptorField(desc_proto, 'automatic', fdp.TYPE_BOOL)
AddDescriptorField(desc_proto, 'price', fdp.TYPE_DOUBLE)
# Add a repeated field
AddDescriptorField.field_index += 1
new_field = desc_proto.field.add()
new_field.name = 'owners'
new_field.type = fdp.TYPE_STRING
new_field.number = AddDescriptorField.field_index
new_field.label = descriptor_pb2.FieldDescriptorProto.LABEL_REPEATED
desc = descriptor.MakeDescriptor(desc_proto)
self.assertTrue('name' in desc.fields_by_name)
self.assertTrue('year' in desc.fields_by_name)
self.assertTrue('automatic' in desc.fields_by_name)
self.assertTrue('price' in desc.fields_by_name)
self.assertTrue('owners' in desc.fields_by_name)
class CarMessage(six.with_metaclass(reflection.GeneratedProtocolMessageType,
message.Message)):
DESCRIPTOR = desc
prius = CarMessage()
prius.name = 'prius'
prius.year = 2010
prius.automatic = True
prius.price = 25134.75
prius.owners.extend(['bob', 'susan'])
serialized_prius = prius.SerializeToString()
new_prius = reflection.ParseMessage(desc, serialized_prius)
self.assertIsNot(new_prius, prius)
self.assertEqual(prius, new_prius)
# these are unnecessary assuming message equality works as advertised but
# explicitly check to be safe since we're mucking about in metaclass foo
self.assertEqual(prius.name, new_prius.name)
self.assertEqual(prius.year, new_prius.year)
self.assertEqual(prius.automatic, new_prius.automatic)
self.assertEqual(prius.price, new_prius.price)
self.assertEqual(prius.owners, new_prius.owners)
def testExtensionDelete(self):
extendee_proto = more_extensions_pb2.ExtendedMessage()
extension_int32 = more_extensions_pb2.optional_int_extension
extendee_proto.Extensions[extension_int32] = 23
extension_repeated = more_extensions_pb2.repeated_int_extension
extendee_proto.Extensions[extension_repeated].append(11)
extension_msg = more_extensions_pb2.optional_message_extension
extendee_proto.Extensions[extension_msg].foreign_message_int = 56
self.assertEqual(len(extendee_proto.Extensions), 3)
del extendee_proto.Extensions[extension_msg]
self.assertEqual(len(extendee_proto.Extensions), 2)
del extendee_proto.Extensions[extension_repeated]
self.assertEqual(len(extendee_proto.Extensions), 1)
# Delete a none exist extension. It is OK to "del m.Extensions[ext]"
# even if the extension is not present in the message; we don't
# raise KeyError. This is consistent with "m.Extensions[ext]"
# returning a default value even if we did not set anything.
del extendee_proto.Extensions[extension_repeated]
self.assertEqual(len(extendee_proto.Extensions), 1)
del extendee_proto.Extensions[extension_int32]
self.assertEqual(len(extendee_proto.Extensions), 0)
def testExtensionIter(self):
extendee_proto = more_extensions_pb2.ExtendedMessage()
extension_int32 = more_extensions_pb2.optional_int_extension
extendee_proto.Extensions[extension_int32] = 23
extension_repeated = more_extensions_pb2.repeated_int_extension
extendee_proto.Extensions[extension_repeated].append(11)
extension_msg = more_extensions_pb2.optional_message_extension
extendee_proto.Extensions[extension_msg].foreign_message_int = 56
# Set some normal fields.
extendee_proto.optional_int32 = 1
extendee_proto.repeated_string.append('hi')
expected = (extension_int32, extension_msg, extension_repeated)
count = 0
for item in extendee_proto.Extensions:
self.assertEqual(item.name, expected[count].name)
self.assertIn(item, extendee_proto.Extensions)
count += 1
self.assertEqual(count, 3)
def testExtensionContainsError(self):
extendee_proto = more_extensions_pb2.ExtendedMessage()
self.assertRaises(KeyError, extendee_proto.Extensions.__contains__, 0)
field = more_extensions_pb2.ExtendedMessage.DESCRIPTOR.fields_by_name[
'optional_int32']
self.assertRaises(KeyError, extendee_proto.Extensions.__contains__, field)
def testTopLevelExtensionsForOptionalScalar(self):
extendee_proto = unittest_pb2.TestAllExtensions()
extension = unittest_pb2.optional_int32_extension
self.assertFalse(extendee_proto.HasExtension(extension))
self.assertNotIn(extension, extendee_proto.Extensions)
self.assertEqual(0, extendee_proto.Extensions[extension])
# As with normal scalar fields, just doing a read doesn't actually set the
# "has" bit.
self.assertFalse(extendee_proto.HasExtension(extension))
self.assertNotIn(extension, extendee_proto.Extensions)
# Actually set the thing.
extendee_proto.Extensions[extension] = 23
self.assertEqual(23, extendee_proto.Extensions[extension])
self.assertTrue(extendee_proto.HasExtension(extension))
self.assertIn(extension, extendee_proto.Extensions)
# Ensure that clearing works as well.
extendee_proto.ClearExtension(extension)
self.assertEqual(0, extendee_proto.Extensions[extension])
self.assertFalse(extendee_proto.HasExtension(extension))
self.assertNotIn(extension, extendee_proto.Extensions)
def testTopLevelExtensionsForRepeatedScalar(self):
extendee_proto = unittest_pb2.TestAllExtensions()
extension = unittest_pb2.repeated_string_extension
self.assertEqual(0, len(extendee_proto.Extensions[extension]))
self.assertNotIn(extension, extendee_proto.Extensions)
extendee_proto.Extensions[extension].append('foo')
self.assertEqual(['foo'], extendee_proto.Extensions[extension])
self.assertIn(extension, extendee_proto.Extensions)
string_list = extendee_proto.Extensions[extension]
extendee_proto.ClearExtension(extension)
self.assertEqual(0, len(extendee_proto.Extensions[extension]))
self.assertNotIn(extension, extendee_proto.Extensions)
self.assertIsNot(string_list, extendee_proto.Extensions[extension])
# Shouldn't be allowed to do Extensions[extension] = 'a'
self.assertRaises(TypeError, operator.setitem, extendee_proto.Extensions,
extension, 'a')
def testTopLevelExtensionsForOptionalMessage(self):
extendee_proto = unittest_pb2.TestAllExtensions()
extension = unittest_pb2.optional_foreign_message_extension
self.assertFalse(extendee_proto.HasExtension(extension))
self.assertNotIn(extension, extendee_proto.Extensions)
self.assertEqual(0, extendee_proto.Extensions[extension].c)
# As with normal (non-extension) fields, merely reading from the
# thing shouldn't set the "has" bit.
self.assertFalse(extendee_proto.HasExtension(extension))
self.assertNotIn(extension, extendee_proto.Extensions)
extendee_proto.Extensions[extension].c = 23
self.assertEqual(23, extendee_proto.Extensions[extension].c)
self.assertTrue(extendee_proto.HasExtension(extension))
self.assertIn(extension, extendee_proto.Extensions)
# Save a reference here.
foreign_message = extendee_proto.Extensions[extension]
extendee_proto.ClearExtension(extension)
self.assertIsNot(foreign_message, extendee_proto.Extensions[extension])
# Setting a field on foreign_message now shouldn't set
# any "has" bits on extendee_proto.
foreign_message.c = 42
self.assertEqual(42, foreign_message.c)
self.assertTrue(foreign_message.HasField('c'))
self.assertFalse(extendee_proto.HasExtension(extension))
self.assertNotIn(extension, extendee_proto.Extensions)
# Shouldn't be allowed to do Extensions[extension] = 'a'
self.assertRaises(TypeError, operator.setitem, extendee_proto.Extensions,
extension, 'a')
def testTopLevelExtensionsForRepeatedMessage(self):
extendee_proto = unittest_pb2.TestAllExtensions()
extension = unittest_pb2.repeatedgroup_extension
self.assertEqual(0, len(extendee_proto.Extensions[extension]))
group = extendee_proto.Extensions[extension].add()
group.a = 23
self.assertEqual(23, extendee_proto.Extensions[extension][0].a)
group.a = 42
self.assertEqual(42, extendee_proto.Extensions[extension][0].a)
group_list = extendee_proto.Extensions[extension]
extendee_proto.ClearExtension(extension)
self.assertEqual(0, len(extendee_proto.Extensions[extension]))
self.assertIsNot(group_list, extendee_proto.Extensions[extension])
# Shouldn't be allowed to do Extensions[extension] = 'a'
self.assertRaises(TypeError, operator.setitem, extendee_proto.Extensions,
extension, 'a')
def testNestedExtensions(self):
extendee_proto = unittest_pb2.TestAllExtensions()
extension = unittest_pb2.TestRequired.single
# We just test the non-repeated case.
self.assertFalse(extendee_proto.HasExtension(extension))
self.assertNotIn(extension, extendee_proto.Extensions)
required = extendee_proto.Extensions[extension]
self.assertEqual(0, required.a)
self.assertFalse(extendee_proto.HasExtension(extension))
self.assertNotIn(extension, extendee_proto.Extensions)
required.a = 23
self.assertEqual(23, extendee_proto.Extensions[extension].a)
self.assertTrue(extendee_proto.HasExtension(extension))
self.assertIn(extension, extendee_proto.Extensions)
extendee_proto.ClearExtension(extension)
self.assertIsNot(required, extendee_proto.Extensions[extension])
self.assertFalse(extendee_proto.HasExtension(extension))
self.assertNotIn(extension, extendee_proto.Extensions)
def testRegisteredExtensions(self):
pool = unittest_pb2.DESCRIPTOR.pool
self.assertTrue(
pool.FindExtensionByNumber(
unittest_pb2.TestAllExtensions.DESCRIPTOR, 1))
self.assertIs(
pool.FindExtensionByName(
'protobuf_unittest.optional_int32_extension').containing_type,
unittest_pb2.TestAllExtensions.DESCRIPTOR)
# Make sure extensions haven't been registered into types that shouldn't
# have any.
self.assertEqual(0, len(
pool.FindAllExtensions(unittest_pb2.TestAllTypes.DESCRIPTOR)))
# If message A directly contains message B, and
# a.HasField('b') is currently False, then mutating any
# extension in B should change a.HasField('b') to True
# (and so on up the object tree).
def testHasBitsForAncestorsOfExtendedMessage(self):
# Optional scalar extension.
toplevel = more_extensions_pb2.TopLevelMessage()
self.assertFalse(toplevel.HasField('submessage'))
self.assertEqual(0, toplevel.submessage.Extensions[
more_extensions_pb2.optional_int_extension])
self.assertFalse(toplevel.HasField('submessage'))
toplevel.submessage.Extensions[
more_extensions_pb2.optional_int_extension] = 23
self.assertEqual(23, toplevel.submessage.Extensions[
more_extensions_pb2.optional_int_extension])
self.assertTrue(toplevel.HasField('submessage'))
# Repeated scalar extension.
toplevel = more_extensions_pb2.TopLevelMessage()
self.assertFalse(toplevel.HasField('submessage'))
self.assertEqual([], toplevel.submessage.Extensions[
more_extensions_pb2.repeated_int_extension])
self.assertFalse(toplevel.HasField('submessage'))
toplevel.submessage.Extensions[
more_extensions_pb2.repeated_int_extension].append(23)
self.assertEqual([23], toplevel.submessage.Extensions[
more_extensions_pb2.repeated_int_extension])
self.assertTrue(toplevel.HasField('submessage'))
# Optional message extension.
toplevel = more_extensions_pb2.TopLevelMessage()
self.assertFalse(toplevel.HasField('submessage'))
self.assertEqual(0, toplevel.submessage.Extensions[
more_extensions_pb2.optional_message_extension].foreign_message_int)
self.assertFalse(toplevel.HasField('submessage'))
toplevel.submessage.Extensions[
more_extensions_pb2.optional_message_extension].foreign_message_int = 23
self.assertEqual(23, toplevel.submessage.Extensions[
more_extensions_pb2.optional_message_extension].foreign_message_int)
self.assertTrue(toplevel.HasField('submessage'))
# Repeated message extension.
toplevel = more_extensions_pb2.TopLevelMessage()
self.assertFalse(toplevel.HasField('submessage'))
self.assertEqual(0, len(toplevel.submessage.Extensions[
more_extensions_pb2.repeated_message_extension]))
self.assertFalse(toplevel.HasField('submessage'))
foreign = toplevel.submessage.Extensions[
more_extensions_pb2.repeated_message_extension].add()
self.assertEqual(foreign, toplevel.submessage.Extensions[
more_extensions_pb2.repeated_message_extension][0])
self.assertTrue(toplevel.HasField('submessage'))
def testDisconnectionAfterClearingEmptyMessage(self):
toplevel = more_extensions_pb2.TopLevelMessage()
extendee_proto = toplevel.submessage
extension = more_extensions_pb2.optional_message_extension
extension_proto = extendee_proto.Extensions[extension]
extendee_proto.ClearExtension(extension)
extension_proto.foreign_message_int = 23
self.assertIsNot(extension_proto, extendee_proto.Extensions[extension])
def testExtensionFailureModes(self):
extendee_proto = unittest_pb2.TestAllExtensions()
# Try non-extension-handle arguments to HasExtension,
# ClearExtension(), and Extensions[]...
self.assertRaises(KeyError, extendee_proto.HasExtension, 1234)
self.assertRaises(KeyError, extendee_proto.ClearExtension, 1234)
self.assertRaises(KeyError, extendee_proto.Extensions.__getitem__, 1234)
self.assertRaises(KeyError, extendee_proto.Extensions.__setitem__, 1234, 5)
# Try something that *is* an extension handle, just not for
# this message...
for unknown_handle in (more_extensions_pb2.optional_int_extension,
more_extensions_pb2.optional_message_extension,
more_extensions_pb2.repeated_int_extension,
more_extensions_pb2.repeated_message_extension):
self.assertRaises(KeyError, extendee_proto.HasExtension,
unknown_handle)
self.assertRaises(KeyError, extendee_proto.ClearExtension,
unknown_handle)
self.assertRaises(KeyError, extendee_proto.Extensions.__getitem__,
unknown_handle)
self.assertRaises(KeyError, extendee_proto.Extensions.__setitem__,
unknown_handle, 5)
# Try call HasExtension() with a valid handle, but for a
# *repeated* field. (Just as with non-extension repeated
# fields, Has*() isn't supported for extension repeated fields).
self.assertRaises(KeyError, extendee_proto.HasExtension,
unittest_pb2.repeated_string_extension)
def testMergeFromOptionalGroup(self):
# Test merge with an optional group.
proto1 = unittest_pb2.TestAllTypes()
proto1.optionalgroup.a = 12
proto2 = unittest_pb2.TestAllTypes()
proto2.MergeFrom(proto1)
self.assertEqual(12, proto2.optionalgroup.a)
def testMergeFromExtensionsSingular(self):
proto1 = unittest_pb2.TestAllExtensions()
proto1.Extensions[unittest_pb2.optional_int32_extension] = 1
proto2 = unittest_pb2.TestAllExtensions()
proto2.MergeFrom(proto1)
self.assertEqual(
1, proto2.Extensions[unittest_pb2.optional_int32_extension])
def testMergeFromExtensionsRepeated(self):
proto1 = unittest_pb2.TestAllExtensions()
proto1.Extensions[unittest_pb2.repeated_int32_extension].append(1)
proto1.Extensions[unittest_pb2.repeated_int32_extension].append(2)
proto2 = unittest_pb2.TestAllExtensions()
proto2.Extensions[unittest_pb2.repeated_int32_extension].append(0)
proto2.MergeFrom(proto1)
self.assertEqual(
3, len(proto2.Extensions[unittest_pb2.repeated_int32_extension]))
self.assertEqual(
0, proto2.Extensions[unittest_pb2.repeated_int32_extension][0])
self.assertEqual(
1, proto2.Extensions[unittest_pb2.repeated_int32_extension][1])
self.assertEqual(
2, proto2.Extensions[unittest_pb2.repeated_int32_extension][2])
def testMergeFromExtensionsNestedMessage(self):
proto1 = unittest_pb2.TestAllExtensions()
ext1 = proto1.Extensions[
unittest_pb2.repeated_nested_message_extension]
m = ext1.add()
m.bb = 222
m = ext1.add()
m.bb = 333
proto2 = unittest_pb2.TestAllExtensions()
ext2 = proto2.Extensions[
unittest_pb2.repeated_nested_message_extension]
m = ext2.add()
m.bb = 111
proto2.MergeFrom(proto1)
ext2 = proto2.Extensions[
unittest_pb2.repeated_nested_message_extension]
self.assertEqual(3, len(ext2))
self.assertEqual(111, ext2[0].bb)
self.assertEqual(222, ext2[1].bb)
self.assertEqual(333, ext2[2].bb)
def testCopyFromBadType(self):
# The python implementation doesn't raise an exception in this
# case. In theory it should.
if api_implementation.Type() == 'python':
return
proto1 = unittest_pb2.TestAllTypes()
proto2 = unittest_pb2.TestAllExtensions()
self.assertRaises(TypeError, proto1.CopyFrom, proto2)
def testClear(self):
proto = unittest_pb2.TestAllTypes()
# C++ implementation does not support lazy fields right now so leave it
# out for now.
if api_implementation.Type() == 'python':
test_util.SetAllFields(proto)
else:
test_util.SetAllNonLazyFields(proto)
# Clear the message.
proto.Clear()
self.assertEqual(proto.ByteSize(), 0)
empty_proto = unittest_pb2.TestAllTypes()
self.assertEqual(proto, empty_proto)
# Test if extensions which were set are cleared.
proto = unittest_pb2.TestAllExtensions()
test_util.SetAllExtensions(proto)
# Clear the message.
proto.Clear()
self.assertEqual(proto.ByteSize(), 0)
empty_proto = unittest_pb2.TestAllExtensions()
self.assertEqual(proto, empty_proto)
def testDisconnectingInOneof(self):
m = unittest_pb2.TestOneof2() # This message has two messages in a oneof.
m.foo_message.qux_int = 5
sub_message = m.foo_message
# Accessing another message's field does not clear the first one
self.assertEqual(m.foo_lazy_message.qux_int, 0)
self.assertEqual(m.foo_message.qux_int, 5)
# But mutating another message in the oneof detaches the first one.
m.foo_lazy_message.qux_int = 6
self.assertEqual(m.foo_message.qux_int, 0)
# The reference we got above was detached and is still valid.
self.assertEqual(sub_message.qux_int, 5)
sub_message.qux_int = 7
def assertInitialized(self, proto):
self.assertTrue(proto.IsInitialized())
# Neither method should raise an exception.
proto.SerializeToString()
proto.SerializePartialToString()
def assertNotInitialized(self, proto, error_size=None):
errors = []
self.assertFalse(proto.IsInitialized())
self.assertFalse(proto.IsInitialized(errors))
self.assertEqual(error_size, len(errors))
self.assertRaises(message.EncodeError, proto.SerializeToString)
# "Partial" serialization doesn't care if message is uninitialized.
proto.SerializePartialToString()
def testIsInitialized(self):
# Trivial cases - all optional fields and extensions.
proto = unittest_pb2.TestAllTypes()
self.assertInitialized(proto)
proto = unittest_pb2.TestAllExtensions()
self.assertInitialized(proto)
# The case of uninitialized required fields.
proto = unittest_pb2.TestRequired()
self.assertNotInitialized(proto, 3)
proto.a = proto.b = proto.c = 2
self.assertInitialized(proto)
# The case of uninitialized submessage.
proto = unittest_pb2.TestRequiredForeign()
self.assertInitialized(proto)
proto.optional_message.a = 1
self.assertNotInitialized(proto, 2)
proto.optional_message.b = 0
proto.optional_message.c = 0
self.assertInitialized(proto)
# Uninitialized repeated submessage.
message1 = proto.repeated_message.add()
self.assertNotInitialized(proto, 3)
message1.a = message1.b = message1.c = 0
self.assertInitialized(proto)
# Uninitialized repeated group in an extension.
proto = unittest_pb2.TestAllExtensions()
extension = unittest_pb2.TestRequired.multi
message1 = proto.Extensions[extension].add()
message2 = proto.Extensions[extension].add()
self.assertNotInitialized(proto, 6)
message1.a = 1
message1.b = 1
message1.c = 1
self.assertNotInitialized(proto, 3)
message2.a = 2
message2.b = 2
message2.c = 2
self.assertInitialized(proto)
# Uninitialized nonrepeated message in an extension.
proto = unittest_pb2.TestAllExtensions()
extension = unittest_pb2.TestRequired.single
proto.Extensions[extension].a = 1
self.assertNotInitialized(proto, 2)
proto.Extensions[extension].b = 2
proto.Extensions[extension].c = 3
self.assertInitialized(proto)
# Try passing an errors list.
errors = []
proto = unittest_pb2.TestRequired()
self.assertFalse(proto.IsInitialized(errors))
self.assertEqual(errors, ['a', 'b', 'c'])
self.assertRaises(TypeError, proto.IsInitialized, 1, 2, 3)
@unittest.skipIf(
api_implementation.Type() != 'cpp' or api_implementation.Version() != 2,
'Errors are only available from the most recent C++ implementation.')
def testFileDescriptorErrors(self):
file_name = 'test_file_descriptor_errors.proto'
package_name = 'test_file_descriptor_errors.proto'
file_descriptor_proto = descriptor_pb2.FileDescriptorProto()
file_descriptor_proto.name = file_name
file_descriptor_proto.package = package_name
m1 = file_descriptor_proto.message_type.add()
m1.name = 'msg1'
# Compiles the proto into the C++ descriptor pool
descriptor.FileDescriptor(
file_name,
package_name,
serialized_pb=file_descriptor_proto.SerializeToString())
# Add a FileDescriptorProto that has duplicate symbols
another_file_name = 'another_test_file_descriptor_errors.proto'
file_descriptor_proto.name = another_file_name
m2 = file_descriptor_proto.message_type.add()
m2.name = 'msg2'
with self.assertRaises(TypeError) as cm:
descriptor.FileDescriptor(
another_file_name,
package_name,
serialized_pb=file_descriptor_proto.SerializeToString())
self.assertTrue(hasattr(cm, 'exception'), '%s not raised' %
getattr(cm.expected, '__name__', cm.expected))
self.assertIn('test_file_descriptor_errors.proto', str(cm.exception))
# Error message will say something about this definition being a
# duplicate, though we don't check the message exactly to avoid a
# dependency on the C++ logging code.
self.assertIn('test_file_descriptor_errors.msg1', str(cm.exception))
def testStringUTF8Serialization(self):
proto = message_set_extensions_pb2.TestMessageSet()
extension_message = message_set_extensions_pb2.TestMessageSetExtension2
extension = extension_message.message_set_extension
test_utf8 = u'Тест'
test_utf8_bytes = test_utf8.encode('utf-8')
# 'Test' in another language, using UTF-8 charset.
proto.Extensions[extension].str = test_utf8
# Serialize using the MessageSet wire format (this is specified in the
# .proto file).
serialized = proto.SerializeToString()
# Check byte size.
self.assertEqual(proto.ByteSize(), len(serialized))
raw = unittest_mset_pb2.RawMessageSet()
bytes_read = raw.MergeFromString(serialized)
self.assertEqual(len(serialized), bytes_read)
message2 = message_set_extensions_pb2.TestMessageSetExtension2()
self.assertEqual(1, len(raw.item))
# Check that the type_id is the same as the tag ID in the .proto file.
self.assertEqual(raw.item[0].type_id, 98418634)
# Check the actual bytes on the wire.
self.assertTrue(raw.item[0].message.endswith(test_utf8_bytes))
bytes_read = message2.MergeFromString(raw.item[0].message)
self.assertEqual(len(raw.item[0].message), bytes_read)
self.assertEqual(type(message2.str), six.text_type)
self.assertEqual(message2.str, test_utf8)
# The pure Python API throws an exception on MergeFromString(),
# if any of the string fields of the message can't be UTF-8 decoded.
# The C++ implementation of the API has no way to check that on
# MergeFromString and thus has no way to throw the exception.
#
# The pure Python API always returns objects of type 'unicode' (UTF-8
# encoded), or 'bytes' (in 7 bit ASCII).
badbytes = raw.item[0].message.replace(
test_utf8_bytes, len(test_utf8_bytes) * b'\xff')
unicode_decode_failed = False
try:
message2.MergeFromString(badbytes)
except UnicodeDecodeError:
unicode_decode_failed = True
string_field = message2.str
self.assertTrue(unicode_decode_failed or type(string_field) is bytes)
def testSetInParent(self):
proto = unittest_pb2.TestAllTypes()
self.assertFalse(proto.HasField('optionalgroup'))
proto.optionalgroup.SetInParent()
self.assertTrue(proto.HasField('optionalgroup'))
def testPackageInitializationImport(self):
"""Test that we can import nested messages from their __init__.py.
Such setup is not trivial since at the time of processing of __init__.py one
can't refer to its submodules by name in code, so expressions like
google.protobuf.internal.import_test_package.inner_pb2
don't work. They do work in imports, so we have assign an alias at import
and then use that alias in generated code.
"""
# We import here since it's the import that used to fail, and we want
# the failure to have the right context.
# pylint: disable=g-import-not-at-top
from google.protobuf.internal import import_test_package
# pylint: enable=g-import-not-at-top
msg = import_test_package.myproto.Outer()
# Just check the default value.
self.assertEqual(57, msg.inner.value)
# Since we had so many tests for protocol buffer equality, we broke these out
# into separate TestCase classes.
@testing_refleaks.TestCase
class TestAllTypesEqualityTest(unittest.TestCase):
def setUp(self):
self.first_proto = unittest_pb2.TestAllTypes()
self.second_proto = unittest_pb2.TestAllTypes()
def testNotHashable(self):
self.assertRaises(TypeError, hash, self.first_proto)
def testSelfEquality(self):
self.assertEqual(self.first_proto, self.first_proto)
def testEmptyProtosEqual(self):
self.assertEqual(self.first_proto, self.second_proto)
@testing_refleaks.TestCase
class FullProtosEqualityTest(unittest.TestCase):
"""Equality tests using completely-full protos as a starting point."""
def setUp(self):
self.first_proto = unittest_pb2.TestAllTypes()
self.second_proto = unittest_pb2.TestAllTypes()
test_util.SetAllFields(self.first_proto)
test_util.SetAllFields(self.second_proto)
def testNotHashable(self):
self.assertRaises(TypeError, hash, self.first_proto)
def testNoneNotEqual(self):
self.assertNotEqual(self.first_proto, None)
self.assertNotEqual(None, self.second_proto)
def testNotEqualToOtherMessage(self):
third_proto = unittest_pb2.TestRequired()
self.assertNotEqual(self.first_proto, third_proto)
self.assertNotEqual(third_proto, self.second_proto)
def testAllFieldsFilledEquality(self):
self.assertEqual(self.first_proto, self.second_proto)
def testNonRepeatedScalar(self):
# Nonrepeated scalar field change should cause inequality.
self.first_proto.optional_int32 += 1
self.assertNotEqual(self.first_proto, self.second_proto)
# ...as should clearing a field.
self.first_proto.ClearField('optional_int32')
self.assertNotEqual(self.first_proto, self.second_proto)
def testNonRepeatedComposite(self):
# Change a nonrepeated composite field.
self.first_proto.optional_nested_message.bb += 1
self.assertNotEqual(self.first_proto, self.second_proto)
self.first_proto.optional_nested_message.bb -= 1
self.assertEqual(self.first_proto, self.second_proto)
# Clear a field in the nested message.
self.first_proto.optional_nested_message.ClearField('bb')
self.assertNotEqual(self.first_proto, self.second_proto)
self.first_proto.optional_nested_message.bb = (
self.second_proto.optional_nested_message.bb)
self.assertEqual(self.first_proto, self.second_proto)
# Remove the nested message entirely.
self.first_proto.ClearField('optional_nested_message')
self.assertNotEqual(self.first_proto, self.second_proto)
def testRepeatedScalar(self):
# Change a repeated scalar field.
self.first_proto.repeated_int32.append(5)
self.assertNotEqual(self.first_proto, self.second_proto)
self.first_proto.ClearField('repeated_int32')
self.assertNotEqual(self.first_proto, self.second_proto)
def testRepeatedComposite(self):
# Change value within a repeated composite field.
self.first_proto.repeated_nested_message[0].bb += 1
self.assertNotEqual(self.first_proto, self.second_proto)
self.first_proto.repeated_nested_message[0].bb -= 1
self.assertEqual(self.first_proto, self.second_proto)
# Add a value to a repeated composite field.
self.first_proto.repeated_nested_message.add()
self.assertNotEqual(self.first_proto, self.second_proto)
self.second_proto.repeated_nested_message.add()
self.assertEqual(self.first_proto, self.second_proto)
def testNonRepeatedScalarHasBits(self):
# Ensure that we test "has" bits as well as value for
# nonrepeated scalar field.
self.first_proto.ClearField('optional_int32')
self.second_proto.optional_int32 = 0
self.assertNotEqual(self.first_proto, self.second_proto)
def testNonRepeatedCompositeHasBits(self):
# Ensure that we test "has" bits as well as value for
# nonrepeated composite field.
self.first_proto.ClearField('optional_nested_message')
self.second_proto.optional_nested_message.ClearField('bb')
self.assertNotEqual(self.first_proto, self.second_proto)
self.first_proto.optional_nested_message.bb = 0
self.first_proto.optional_nested_message.ClearField('bb')
self.assertEqual(self.first_proto, self.second_proto)
@testing_refleaks.TestCase
class ExtensionEqualityTest(unittest.TestCase):
def testExtensionEquality(self):
first_proto = unittest_pb2.TestAllExtensions()
second_proto = unittest_pb2.TestAllExtensions()
self.assertEqual(first_proto, second_proto)
test_util.SetAllExtensions(first_proto)
self.assertNotEqual(first_proto, second_proto)
test_util.SetAllExtensions(second_proto)
self.assertEqual(first_proto, second_proto)
# Ensure that we check value equality.
first_proto.Extensions[unittest_pb2.optional_int32_extension] += 1
self.assertNotEqual(first_proto, second_proto)
first_proto.Extensions[unittest_pb2.optional_int32_extension] -= 1
self.assertEqual(first_proto, second_proto)
# Ensure that we also look at "has" bits.
first_proto.ClearExtension(unittest_pb2.optional_int32_extension)
second_proto.Extensions[unittest_pb2.optional_int32_extension] = 0
self.assertNotEqual(first_proto, second_proto)
first_proto.Extensions[unittest_pb2.optional_int32_extension] = 0
self.assertEqual(first_proto, second_proto)
# Ensure that differences in cached values
# don't matter if "has" bits are both false.
first_proto = unittest_pb2.TestAllExtensions()
second_proto = unittest_pb2.TestAllExtensions()
self.assertEqual(
0, first_proto.Extensions[unittest_pb2.optional_int32_extension])
self.assertEqual(first_proto, second_proto)
@testing_refleaks.TestCase
class MutualRecursionEqualityTest(unittest.TestCase):
def testEqualityWithMutualRecursion(self):
first_proto = unittest_pb2.TestMutualRecursionA()
second_proto = unittest_pb2.TestMutualRecursionA()
self.assertEqual(first_proto, second_proto)
first_proto.bb.a.bb.optional_int32 = 23
self.assertNotEqual(first_proto, second_proto)
second_proto.bb.a.bb.optional_int32 = 23
self.assertEqual(first_proto, second_proto)
@testing_refleaks.TestCase
class ByteSizeTest(unittest.TestCase):
def setUp(self):
self.proto = unittest_pb2.TestAllTypes()
self.extended_proto = more_extensions_pb2.ExtendedMessage()
self.packed_proto = unittest_pb2.TestPackedTypes()
self.packed_extended_proto = unittest_pb2.TestPackedExtensions()
def Size(self):
return self.proto.ByteSize()
def testEmptyMessage(self):
self.assertEqual(0, self.proto.ByteSize())
def testSizedOnKwargs(self):
# Use a separate message to ensure testing right after creation.
proto = unittest_pb2.TestAllTypes()
self.assertEqual(0, proto.ByteSize())
proto_kwargs = unittest_pb2.TestAllTypes(optional_int64 = 1)
# One byte for the tag, one to encode varint 1.
self.assertEqual(2, proto_kwargs.ByteSize())
def testVarints(self):
def Test(i, expected_varint_size):
self.proto.Clear()
self.proto.optional_int64 = i
# Add one to the varint size for the tag info
# for tag 1.
self.assertEqual(expected_varint_size + 1, self.Size())
Test(0, 1)
Test(1, 1)
for i, num_bytes in zip(range(7, 63, 7), range(1, 10000)):
Test((1 << i) - 1, num_bytes)
Test(-1, 10)
Test(-2, 10)
Test(-(1 << 63), 10)
def testStrings(self):
self.proto.optional_string = ''
# Need one byte for tag info (tag #14), and one byte for length.
self.assertEqual(2, self.Size())
self.proto.optional_string = 'abc'
# Need one byte for tag info (tag #14), and one byte for length.
self.assertEqual(2 + len(self.proto.optional_string), self.Size())
self.proto.optional_string = 'x' * 128
# Need one byte for tag info (tag #14), and TWO bytes for length.
self.assertEqual(3 + len(self.proto.optional_string), self.Size())
def testOtherNumerics(self):
self.proto.optional_fixed32 = 1234
# One byte for tag and 4 bytes for fixed32.
self.assertEqual(5, self.Size())
self.proto = unittest_pb2.TestAllTypes()
self.proto.optional_fixed64 = 1234
# One byte for tag and 8 bytes for fixed64.
self.assertEqual(9, self.Size())
self.proto = unittest_pb2.TestAllTypes()
self.proto.optional_float = 1.234
# One byte for tag and 4 bytes for float.
self.assertEqual(5, self.Size())
self.proto = unittest_pb2.TestAllTypes()
self.proto.optional_double = 1.234
# One byte for tag and 8 bytes for float.
self.assertEqual(9, self.Size())
self.proto = unittest_pb2.TestAllTypes()
self.proto.optional_sint32 = 64
# One byte for tag and 2 bytes for zig-zag-encoded 64.
self.assertEqual(3, self.Size())
self.proto = unittest_pb2.TestAllTypes()
def testComposites(self):
# 3 bytes.
self.proto.optional_nested_message.bb = (1 << 14)
# Plus one byte for bb tag.
# Plus 1 byte for optional_nested_message serialized size.
# Plus two bytes for optional_nested_message tag.
self.assertEqual(3 + 1 + 1 + 2, self.Size())
def testGroups(self):
# 4 bytes.
self.proto.optionalgroup.a = (1 << 21)
# Plus two bytes for |a| tag.
# Plus 2 * two bytes for START_GROUP and END_GROUP tags.
self.assertEqual(4 + 2 + 2*2, self.Size())
def testRepeatedScalars(self):
self.proto.repeated_int32.append(10) # 1 byte.
self.proto.repeated_int32.append(128) # 2 bytes.
# Also need 2 bytes for each entry for tag.
self.assertEqual(1 + 2 + 2*2, self.Size())
def testRepeatedScalarsExtend(self):
self.proto.repeated_int32.extend([10, 128]) # 3 bytes.
# Also need 2 bytes for each entry for tag.
self.assertEqual(1 + 2 + 2*2, self.Size())
def testRepeatedScalarsRemove(self):
self.proto.repeated_int32.append(10) # 1 byte.
self.proto.repeated_int32.append(128) # 2 bytes.
# Also need 2 bytes for each entry for tag.
self.assertEqual(1 + 2 + 2*2, self.Size())
self.proto.repeated_int32.remove(128)
self.assertEqual(1 + 2, self.Size())
def testRepeatedComposites(self):
# Empty message. 2 bytes tag plus 1 byte length.
foreign_message_0 = self.proto.repeated_nested_message.add()
# 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int.
foreign_message_1 = self.proto.repeated_nested_message.add()
foreign_message_1.bb = 7
self.assertEqual(2 + 1 + 2 + 1 + 1 + 1, self.Size())
def testRepeatedCompositesDelete(self):
# Empty message. 2 bytes tag plus 1 byte length.
foreign_message_0 = self.proto.repeated_nested_message.add()
# 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int.
foreign_message_1 = self.proto.repeated_nested_message.add()
foreign_message_1.bb = 9
self.assertEqual(2 + 1 + 2 + 1 + 1 + 1, self.Size())
repeated_nested_message = copy.deepcopy(
self.proto.repeated_nested_message)
# 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int.
del self.proto.repeated_nested_message[0]
self.assertEqual(2 + 1 + 1 + 1, self.Size())
# Now add a new message.
foreign_message_2 = self.proto.repeated_nested_message.add()
foreign_message_2.bb = 12
# 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int.
# 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int.
self.assertEqual(2 + 1 + 1 + 1 + 2 + 1 + 1 + 1, self.Size())
# 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int.
del self.proto.repeated_nested_message[1]
self.assertEqual(2 + 1 + 1 + 1, self.Size())
del self.proto.repeated_nested_message[0]
self.assertEqual(0, self.Size())
self.assertEqual(2, len(repeated_nested_message))
del repeated_nested_message[0:1]
# TODO(jieluo): Fix cpp extension bug when delete repeated message.
if api_implementation.Type() == 'python':
self.assertEqual(1, len(repeated_nested_message))
del repeated_nested_message[-1]
# TODO(jieluo): Fix cpp extension bug when delete repeated message.
if api_implementation.Type() == 'python':
self.assertEqual(0, len(repeated_nested_message))
def testRepeatedGroups(self):
# 2-byte START_GROUP plus 2-byte END_GROUP.
group_0 = self.proto.repeatedgroup.add()
# 2-byte START_GROUP plus 2-byte |a| tag + 1-byte |a|
# plus 2-byte END_GROUP.
group_1 = self.proto.repeatedgroup.add()
group_1.a = 7
self.assertEqual(2 + 2 + 2 + 2 + 1 + 2, self.Size())
def testExtensions(self):
proto = unittest_pb2.TestAllExtensions()
self.assertEqual(0, proto.ByteSize())
extension = unittest_pb2.optional_int32_extension # Field #1, 1 byte.
proto.Extensions[extension] = 23
# 1 byte for tag, 1 byte for value.
self.assertEqual(2, proto.ByteSize())
field = unittest_pb2.TestAllTypes.DESCRIPTOR.fields_by_name[
'optional_int32']
with self.assertRaises(KeyError):
proto.Extensions[field] = 23
def testCacheInvalidationForNonrepeatedScalar(self):
# Test non-extension.
self.proto.optional_int32 = 1
self.assertEqual(2, self.proto.ByteSize())
self.proto.optional_int32 = 128
self.assertEqual(3, self.proto.ByteSize())
self.proto.ClearField('optional_int32')
self.assertEqual(0, self.proto.ByteSize())
# Test within extension.
extension = more_extensions_pb2.optional_int_extension
self.extended_proto.Extensions[extension] = 1
self.assertEqual(2, self.extended_proto.ByteSize())
self.extended_proto.Extensions[extension] = 128
self.assertEqual(3, self.extended_proto.ByteSize())
self.extended_proto.ClearExtension(extension)
self.assertEqual(0, self.extended_proto.ByteSize())
def testCacheInvalidationForRepeatedScalar(self):
# Test non-extension.
self.proto.repeated_int32.append(1)
self.assertEqual(3, self.proto.ByteSize())
self.proto.repeated_int32.append(1)
self.assertEqual(6, self.proto.ByteSize())
self.proto.repeated_int32[1] = 128
self.assertEqual(7, self.proto.ByteSize())
self.proto.ClearField('repeated_int32')
self.assertEqual(0, self.proto.ByteSize())
# Test within extension.
extension = more_extensions_pb2.repeated_int_extension
repeated = self.extended_proto.Extensions[extension]
repeated.append(1)
self.assertEqual(2, self.extended_proto.ByteSize())
repeated.append(1)
self.assertEqual(4, self.extended_proto.ByteSize())
repeated[1] = 128
self.assertEqual(5, self.extended_proto.ByteSize())
self.extended_proto.ClearExtension(extension)
self.assertEqual(0, self.extended_proto.ByteSize())
def testCacheInvalidationForNonrepeatedMessage(self):
# Test non-extension.
self.proto.optional_foreign_message.c = 1
self.assertEqual(5, self.proto.ByteSize())
self.proto.optional_foreign_message.c = 128
self.assertEqual(6, self.proto.ByteSize())
self.proto.optional_foreign_message.ClearField('c')
self.assertEqual(3, self.proto.ByteSize())
self.proto.ClearField('optional_foreign_message')
self.assertEqual(0, self.proto.ByteSize())
if api_implementation.Type() == 'python':
# This is only possible in pure-Python implementation of the API.
child = self.proto.optional_foreign_message
self.proto.ClearField('optional_foreign_message')
child.c = 128
self.assertEqual(0, self.proto.ByteSize())
# Test within extension.
extension = more_extensions_pb2.optional_message_extension
child = self.extended_proto.Extensions[extension]
self.assertEqual(0, self.extended_proto.ByteSize())
child.foreign_message_int = 1
self.assertEqual(4, self.extended_proto.ByteSize())
child.foreign_message_int = 128
self.assertEqual(5, self.extended_proto.ByteSize())
self.extended_proto.ClearExtension(extension)
self.assertEqual(0, self.extended_proto.ByteSize())
def testCacheInvalidationForRepeatedMessage(self):
# Test non-extension.
child0 = self.proto.repeated_foreign_message.add()
self.assertEqual(3, self.proto.ByteSize())
self.proto.repeated_foreign_message.add()
self.assertEqual(6, self.proto.ByteSize())
child0.c = 1
self.assertEqual(8, self.proto.ByteSize())
self.proto.ClearField('repeated_foreign_message')
self.assertEqual(0, self.proto.ByteSize())
# Test within extension.
extension = more_extensions_pb2.repeated_message_extension
child_list = self.extended_proto.Extensions[extension]
child0 = child_list.add()
self.assertEqual(2, self.extended_proto.ByteSize())
child_list.add()
self.assertEqual(4, self.extended_proto.ByteSize())
child0.foreign_message_int = 1
self.assertEqual(6, self.extended_proto.ByteSize())
child0.ClearField('foreign_message_int')
self.assertEqual(4, self.extended_proto.ByteSize())
self.extended_proto.ClearExtension(extension)
self.assertEqual(0, self.extended_proto.ByteSize())
def testPackedRepeatedScalars(self):
self.assertEqual(0, self.packed_proto.ByteSize())
self.packed_proto.packed_int32.append(10) # 1 byte.
self.packed_proto.packed_int32.append(128) # 2 bytes.
# The tag is 2 bytes (the field number is 90), and the varint
# storing the length is 1 byte.
int_size = 1 + 2 + 3
self.assertEqual(int_size, self.packed_proto.ByteSize())
self.packed_proto.packed_double.append(4.2) # 8 bytes
self.packed_proto.packed_double.append(3.25) # 8 bytes
# 2 more tag bytes, 1 more length byte.
double_size = 8 + 8 + 3
self.assertEqual(int_size+double_size, self.packed_proto.ByteSize())
self.packed_proto.ClearField('packed_int32')
self.assertEqual(double_size, self.packed_proto.ByteSize())
def testPackedExtensions(self):
self.assertEqual(0, self.packed_extended_proto.ByteSize())
extension = self.packed_extended_proto.Extensions[
unittest_pb2.packed_fixed32_extension]
extension.extend([1, 2, 3, 4]) # 16 bytes
# Tag is 3 bytes.
self.assertEqual(19, self.packed_extended_proto.ByteSize())
# Issues to be sure to cover include:
# * Handling of unrecognized tags ("uninterpreted_bytes").
# * Handling of MessageSets.
# * Consistent ordering of tags in the wire format,
# including ordering between extensions and non-extension
# fields.
# * Consistent serialization of negative numbers, especially
# negative int32s.
# * Handling of empty submessages (with and without "has"
# bits set).
@testing_refleaks.TestCase
class SerializationTest(unittest.TestCase):
def testSerializeEmtpyMessage(self):
first_proto = unittest_pb2.TestAllTypes()
second_proto = unittest_pb2.TestAllTypes()
serialized = first_proto.SerializeToString()
self.assertEqual(first_proto.ByteSize(), len(serialized))
self.assertEqual(
len(serialized),
second_proto.MergeFromString(serialized))
self.assertEqual(first_proto, second_proto)
def testSerializeAllFields(self):
first_proto = unittest_pb2.TestAllTypes()
second_proto = unittest_pb2.TestAllTypes()
test_util.SetAllFields(first_proto)
serialized = first_proto.SerializeToString()
self.assertEqual(first_proto.ByteSize(), len(serialized))
self.assertEqual(
len(serialized),
second_proto.MergeFromString(serialized))
self.assertEqual(first_proto, second_proto)
def testSerializeAllExtensions(self):
first_proto = unittest_pb2.TestAllExtensions()
second_proto = unittest_pb2.TestAllExtensions()
test_util.SetAllExtensions(first_proto)
serialized = first_proto.SerializeToString()
self.assertEqual(
len(serialized),
second_proto.MergeFromString(serialized))
self.assertEqual(first_proto, second_proto)
def testSerializeWithOptionalGroup(self):
first_proto = unittest_pb2.TestAllTypes()
second_proto = unittest_pb2.TestAllTypes()
first_proto.optionalgroup.a = 242
serialized = first_proto.SerializeToString()
self.assertEqual(
len(serialized),
second_proto.MergeFromString(serialized))
self.assertEqual(first_proto, second_proto)
def testSerializeNegativeValues(self):
first_proto = unittest_pb2.TestAllTypes()
first_proto.optional_int32 = -1
first_proto.optional_int64 = -(2 << 40)
first_proto.optional_sint32 = -3
first_proto.optional_sint64 = -(4 << 40)
first_proto.optional_sfixed32 = -5
first_proto.optional_sfixed64 = -(6 << 40)
second_proto = unittest_pb2.TestAllTypes.FromString(
first_proto.SerializeToString())
self.assertEqual(first_proto, second_proto)
def testParseTruncated(self):
# This test is only applicable for the Python implementation of the API.
if api_implementation.Type() != 'python':
return
first_proto = unittest_pb2.TestAllTypes()
test_util.SetAllFields(first_proto)
serialized = memoryview(first_proto.SerializeToString())
for truncation_point in range(len(serialized) + 1):
try:
second_proto = unittest_pb2.TestAllTypes()
unknown_fields = unittest_pb2.TestEmptyMessage()
pos = second_proto._InternalParse(serialized, 0, truncation_point)
# If we didn't raise an error then we read exactly the amount expected.
self.assertEqual(truncation_point, pos)
# Parsing to unknown fields should not throw if parsing to known fields
# did not.
try:
pos2 = unknown_fields._InternalParse(serialized, 0, truncation_point)
self.assertEqual(truncation_point, pos2)
except message.DecodeError:
self.fail('Parsing unknown fields failed when parsing known fields '
'did not.')
except message.DecodeError:
# Parsing unknown fields should also fail.
self.assertRaises(message.DecodeError, unknown_fields._InternalParse,
serialized, 0, truncation_point)
def testCanonicalSerializationOrder(self):
proto = more_messages_pb2.OutOfOrderFields()
# These are also their tag numbers. Even though we're setting these in
# reverse-tag order AND they're listed in reverse tag-order in the .proto
# file, they should nonetheless be serialized in tag order.
proto.optional_sint32 = 5
proto.Extensions[more_messages_pb2.optional_uint64] = 4
proto.optional_uint32 = 3
proto.Extensions[more_messages_pb2.optional_int64] = 2
proto.optional_int32 = 1
serialized = proto.SerializeToString()
self.assertEqual(proto.ByteSize(), len(serialized))
d = _MiniDecoder(serialized)
ReadTag = d.ReadFieldNumberAndWireType
self.assertEqual((1, wire_format.WIRETYPE_VARINT), ReadTag())
self.assertEqual(1, d.ReadInt32())
self.assertEqual((2, wire_format.WIRETYPE_VARINT), ReadTag())
self.assertEqual(2, d.ReadInt64())
self.assertEqual((3, wire_format.WIRETYPE_VARINT), ReadTag())
self.assertEqual(3, d.ReadUInt32())
self.assertEqual((4, wire_format.WIRETYPE_VARINT), ReadTag())
self.assertEqual(4, d.ReadUInt64())
self.assertEqual((5, wire_format.WIRETYPE_VARINT), ReadTag())
self.assertEqual(5, d.ReadSInt32())
def testCanonicalSerializationOrderSameAsCpp(self):
# Copy of the same test we use for C++.
proto = unittest_pb2.TestFieldOrderings()
test_util.SetAllFieldsAndExtensions(proto)
serialized = proto.SerializeToString()
test_util.ExpectAllFieldsAndExtensionsInOrder(serialized)
def testMergeFromStringWhenFieldsAlreadySet(self):
first_proto = unittest_pb2.TestAllTypes()
first_proto.repeated_string.append('foobar')
first_proto.optional_int32 = 23
first_proto.optional_nested_message.bb = 42
serialized = first_proto.SerializeToString()
second_proto = unittest_pb2.TestAllTypes()
second_proto.repeated_string.append('baz')
second_proto.optional_int32 = 100
second_proto.optional_nested_message.bb = 999
bytes_parsed = second_proto.MergeFromString(serialized)
self.assertEqual(len(serialized), bytes_parsed)
# Ensure that we append to repeated fields.
self.assertEqual(['baz', 'foobar'], list(second_proto.repeated_string))
# Ensure that we overwrite nonrepeatd scalars.
self.assertEqual(23, second_proto.optional_int32)
# Ensure that we recursively call MergeFromString() on
# submessages.
self.assertEqual(42, second_proto.optional_nested_message.bb)
def testMessageSetWireFormat(self):
proto = message_set_extensions_pb2.TestMessageSet()
extension_message1 = message_set_extensions_pb2.TestMessageSetExtension1
extension_message2 = message_set_extensions_pb2.TestMessageSetExtension2
extension1 = extension_message1.message_set_extension
extension2 = extension_message2.message_set_extension
extension3 = message_set_extensions_pb2.message_set_extension3
proto.Extensions[extension1].i = 123
proto.Extensions[extension2].str = 'foo'
proto.Extensions[extension3].text = 'bar'
# Serialize using the MessageSet wire format (this is specified in the
# .proto file).
serialized = proto.SerializeToString()
raw = unittest_mset_pb2.RawMessageSet()
self.assertEqual(False,
raw.DESCRIPTOR.GetOptions().message_set_wire_format)
self.assertEqual(
len(serialized),
raw.MergeFromString(serialized))
self.assertEqual(3, len(raw.item))
message1 = message_set_extensions_pb2.TestMessageSetExtension1()
self.assertEqual(
len(raw.item[0].message),
message1.MergeFromString(raw.item[0].message))
self.assertEqual(123, message1.i)
message2 = message_set_extensions_pb2.TestMessageSetExtension2()
self.assertEqual(
len(raw.item[1].message),
message2.MergeFromString(raw.item[1].message))
self.assertEqual('foo', message2.str)
message3 = message_set_extensions_pb2.TestMessageSetExtension3()
self.assertEqual(
len(raw.item[2].message),
message3.MergeFromString(raw.item[2].message))
self.assertEqual('bar', message3.text)
# Deserialize using the MessageSet wire format.
proto2 = message_set_extensions_pb2.TestMessageSet()
self.assertEqual(
len(serialized),
proto2.MergeFromString(serialized))
self.assertEqual(123, proto2.Extensions[extension1].i)
self.assertEqual('foo', proto2.Extensions[extension2].str)
self.assertEqual('bar', proto2.Extensions[extension3].text)
# Check byte size.
self.assertEqual(proto2.ByteSize(), len(serialized))
self.assertEqual(proto.ByteSize(), len(serialized))
def testMessageSetWireFormatUnknownExtension(self):
# Create a message using the message set wire format with an unknown
# message.
raw = unittest_mset_pb2.RawMessageSet()
# Add an item.
item = raw.item.add()
item.type_id = 98418603
extension_message1 = message_set_extensions_pb2.TestMessageSetExtension1
message1 = message_set_extensions_pb2.TestMessageSetExtension1()
message1.i = 12345
item.message = message1.SerializeToString()
# Add a second, unknown extension.
item = raw.item.add()
item.type_id = 98418604
extension_message1 = message_set_extensions_pb2.TestMessageSetExtension1
message1 = message_set_extensions_pb2.TestMessageSetExtension1()
message1.i = 12346
item.message = message1.SerializeToString()
# Add another unknown extension.
item = raw.item.add()
item.type_id = 98418605
message1 = message_set_extensions_pb2.TestMessageSetExtension2()
message1.str = 'foo'
item.message = message1.SerializeToString()
serialized = raw.SerializeToString()
# Parse message using the message set wire format.
proto = message_set_extensions_pb2.TestMessageSet()
self.assertEqual(
len(serialized),
proto.MergeFromString(serialized))
# Check that the message parsed well.
extension_message1 = message_set_extensions_pb2.TestMessageSetExtension1
extension1 = extension_message1.message_set_extension
self.assertEqual(12345, proto.Extensions[extension1].i)
def testUnknownFields(self):
proto = unittest_pb2.TestAllTypes()
test_util.SetAllFields(proto)
serialized = proto.SerializeToString()
# The empty message should be parsable with all of the fields
# unknown.
proto2 = unittest_pb2.TestEmptyMessage()
# Parsing this message should succeed.
self.assertEqual(
len(serialized),
proto2.MergeFromString(serialized))
# Now test with a int64 field set.
proto = unittest_pb2.TestAllTypes()
proto.optional_int64 = 0x0fffffffffffffff
serialized = proto.SerializeToString()
# The empty message should be parsable with all of the fields
# unknown.
proto2 = unittest_pb2.TestEmptyMessage()
# Parsing this message should succeed.
self.assertEqual(
len(serialized),
proto2.MergeFromString(serialized))
def _CheckRaises(self, exc_class, callable_obj, exception):
"""This method checks if the excpetion type and message are as expected."""
try:
callable_obj()
except exc_class as ex:
# Check if the exception message is the right one.
self.assertEqual(exception, str(ex))
return
else:
raise self.failureException('%s not raised' % str(exc_class))
def testSerializeUninitialized(self):
proto = unittest_pb2.TestRequired()
self._CheckRaises(
message.EncodeError,
proto.SerializeToString,
'Message protobuf_unittest.TestRequired is missing required fields: '
'a,b,c')
# Shouldn't raise exceptions.
partial = proto.SerializePartialToString()
proto2 = unittest_pb2.TestRequired()
self.assertFalse(proto2.HasField('a'))
# proto2 ParseFromString does not check that required fields are set.
proto2.ParseFromString(partial)
self.assertFalse(proto2.HasField('a'))
proto.a = 1
self._CheckRaises(
message.EncodeError,
proto.SerializeToString,
'Message protobuf_unittest.TestRequired is missing required fields: b,c')
# Shouldn't raise exceptions.
partial = proto.SerializePartialToString()
proto.b = 2
self._CheckRaises(
message.EncodeError,
proto.SerializeToString,
'Message protobuf_unittest.TestRequired is missing required fields: c')
# Shouldn't raise exceptions.
partial = proto.SerializePartialToString()
proto.c = 3
serialized = proto.SerializeToString()
# Shouldn't raise exceptions.
partial = proto.SerializePartialToString()
proto2 = unittest_pb2.TestRequired()
self.assertEqual(
len(serialized),
proto2.MergeFromString(serialized))
self.assertEqual(1, proto2.a)
self.assertEqual(2, proto2.b)
self.assertEqual(3, proto2.c)
self.assertEqual(
len(partial),
proto2.MergeFromString(partial))
self.assertEqual(1, proto2.a)
self.assertEqual(2, proto2.b)
self.assertEqual(3, proto2.c)
def testSerializeUninitializedSubMessage(self):
proto = unittest_pb2.TestRequiredForeign()
# Sub-message doesn't exist yet, so this succeeds.
proto.SerializeToString()
proto.optional_message.a = 1
self._CheckRaises(
message.EncodeError,
proto.SerializeToString,
'Message protobuf_unittest.TestRequiredForeign '
'is missing required fields: '
'optional_message.b,optional_message.c')
proto.optional_message.b = 2
proto.optional_message.c = 3
proto.SerializeToString()
proto.repeated_message.add().a = 1
proto.repeated_message.add().b = 2
self._CheckRaises(
message.EncodeError,
proto.SerializeToString,
'Message protobuf_unittest.TestRequiredForeign is missing required fields: '
'repeated_message[0].b,repeated_message[0].c,'
'repeated_message[1].a,repeated_message[1].c')
proto.repeated_message[0].b = 2
proto.repeated_message[0].c = 3
proto.repeated_message[1].a = 1
proto.repeated_message[1].c = 3
proto.SerializeToString()
def testSerializeAllPackedFields(self):
first_proto = unittest_pb2.TestPackedTypes()
second_proto = unittest_pb2.TestPackedTypes()
test_util.SetAllPackedFields(first_proto)
serialized = first_proto.SerializeToString()
self.assertEqual(first_proto.ByteSize(), len(serialized))
bytes_read = second_proto.MergeFromString(serialized)
self.assertEqual(second_proto.ByteSize(), bytes_read)
self.assertEqual(first_proto, second_proto)
def testSerializeAllPackedExtensions(self):
first_proto = unittest_pb2.TestPackedExtensions()
second_proto = unittest_pb2.TestPackedExtensions()
test_util.SetAllPackedExtensions(first_proto)
serialized = first_proto.SerializeToString()
bytes_read = second_proto.MergeFromString(serialized)
self.assertEqual(second_proto.ByteSize(), bytes_read)
self.assertEqual(first_proto, second_proto)
def testMergePackedFromStringWhenSomeFieldsAlreadySet(self):
first_proto = unittest_pb2.TestPackedTypes()
first_proto.packed_int32.extend([1, 2])
first_proto.packed_double.append(3.0)
serialized = first_proto.SerializeToString()
second_proto = unittest_pb2.TestPackedTypes()
second_proto.packed_int32.append(3)
second_proto.packed_double.extend([1.0, 2.0])
second_proto.packed_sint32.append(4)
self.assertEqual(
len(serialized),
second_proto.MergeFromString(serialized))
self.assertEqual([3, 1, 2], second_proto.packed_int32)
self.assertEqual([1.0, 2.0, 3.0], second_proto.packed_double)
self.assertEqual([4], second_proto.packed_sint32)
def testPackedFieldsWireFormat(self):
proto = unittest_pb2.TestPackedTypes()
proto.packed_int32.extend([1, 2, 150, 3]) # 1 + 1 + 2 + 1 bytes
proto.packed_double.extend([1.0, 1000.0]) # 8 + 8 bytes
proto.packed_float.append(2.0) # 4 bytes, will be before double
serialized = proto.SerializeToString()
self.assertEqual(proto.ByteSize(), len(serialized))
d = _MiniDecoder(serialized)
ReadTag = d.ReadFieldNumberAndWireType
self.assertEqual((90, wire_format.WIRETYPE_LENGTH_DELIMITED), ReadTag())
self.assertEqual(1+1+1+2, d.ReadInt32())
self.assertEqual(1, d.ReadInt32())
self.assertEqual(2, d.ReadInt32())
self.assertEqual(150, d.ReadInt32())
self.assertEqual(3, d.ReadInt32())
self.assertEqual((100, wire_format.WIRETYPE_LENGTH_DELIMITED), ReadTag())
self.assertEqual(4, d.ReadInt32())
self.assertEqual(2.0, d.ReadFloat())
self.assertEqual((101, wire_format.WIRETYPE_LENGTH_DELIMITED), ReadTag())
self.assertEqual(8+8, d.ReadInt32())
self.assertEqual(1.0, d.ReadDouble())
self.assertEqual(1000.0, d.ReadDouble())
self.assertTrue(d.EndOfStream())
def testParsePackedFromUnpacked(self):
unpacked = unittest_pb2.TestUnpackedTypes()
test_util.SetAllUnpackedFields(unpacked)
packed = unittest_pb2.TestPackedTypes()
serialized = unpacked.SerializeToString()
self.assertEqual(
len(serialized),
packed.MergeFromString(serialized))
expected = unittest_pb2.TestPackedTypes()
test_util.SetAllPackedFields(expected)
self.assertEqual(expected, packed)
def testParseUnpackedFromPacked(self):
packed = unittest_pb2.TestPackedTypes()
test_util.SetAllPackedFields(packed)
unpacked = unittest_pb2.TestUnpackedTypes()
serialized = packed.SerializeToString()
self.assertEqual(
len(serialized),
unpacked.MergeFromString(serialized))
expected = unittest_pb2.TestUnpackedTypes()
test_util.SetAllUnpackedFields(expected)
self.assertEqual(expected, unpacked)
def testFieldNumbers(self):
proto = unittest_pb2.TestAllTypes()
self.assertEqual(unittest_pb2.TestAllTypes.NestedMessage.BB_FIELD_NUMBER, 1)
self.assertEqual(unittest_pb2.TestAllTypes.OPTIONAL_INT32_FIELD_NUMBER, 1)
self.assertEqual(unittest_pb2.TestAllTypes.OPTIONALGROUP_FIELD_NUMBER, 16)
self.assertEqual(
unittest_pb2.TestAllTypes.OPTIONAL_NESTED_MESSAGE_FIELD_NUMBER, 18)
self.assertEqual(
unittest_pb2.TestAllTypes.OPTIONAL_NESTED_ENUM_FIELD_NUMBER, 21)
self.assertEqual(unittest_pb2.TestAllTypes.REPEATED_INT32_FIELD_NUMBER, 31)
self.assertEqual(unittest_pb2.TestAllTypes.REPEATEDGROUP_FIELD_NUMBER, 46)
self.assertEqual(
unittest_pb2.TestAllTypes.REPEATED_NESTED_MESSAGE_FIELD_NUMBER, 48)
self.assertEqual(
unittest_pb2.TestAllTypes.REPEATED_NESTED_ENUM_FIELD_NUMBER, 51)
def testExtensionFieldNumbers(self):
self.assertEqual(unittest_pb2.TestRequired.single.number, 1000)
self.assertEqual(unittest_pb2.TestRequired.SINGLE_FIELD_NUMBER, 1000)
self.assertEqual(unittest_pb2.TestRequired.multi.number, 1001)
self.assertEqual(unittest_pb2.TestRequired.MULTI_FIELD_NUMBER, 1001)
self.assertEqual(unittest_pb2.optional_int32_extension.number, 1)
self.assertEqual(unittest_pb2.OPTIONAL_INT32_EXTENSION_FIELD_NUMBER, 1)
self.assertEqual(unittest_pb2.optionalgroup_extension.number, 16)
self.assertEqual(unittest_pb2.OPTIONALGROUP_EXTENSION_FIELD_NUMBER, 16)
self.assertEqual(unittest_pb2.optional_nested_message_extension.number, 18)
self.assertEqual(
unittest_pb2.OPTIONAL_NESTED_MESSAGE_EXTENSION_FIELD_NUMBER, 18)
self.assertEqual(unittest_pb2.optional_nested_enum_extension.number, 21)
self.assertEqual(unittest_pb2.OPTIONAL_NESTED_ENUM_EXTENSION_FIELD_NUMBER,
21)
self.assertEqual(unittest_pb2.repeated_int32_extension.number, 31)
self.assertEqual(unittest_pb2.REPEATED_INT32_EXTENSION_FIELD_NUMBER, 31)
self.assertEqual(unittest_pb2.repeatedgroup_extension.number, 46)
self.assertEqual(unittest_pb2.REPEATEDGROUP_EXTENSION_FIELD_NUMBER, 46)
self.assertEqual(unittest_pb2.repeated_nested_message_extension.number, 48)
self.assertEqual(
unittest_pb2.REPEATED_NESTED_MESSAGE_EXTENSION_FIELD_NUMBER, 48)
self.assertEqual(unittest_pb2.repeated_nested_enum_extension.number, 51)
self.assertEqual(unittest_pb2.REPEATED_NESTED_ENUM_EXTENSION_FIELD_NUMBER,
51)
def testFieldProperties(self):
cls = unittest_pb2.TestAllTypes
self.assertIs(cls.optional_int32.DESCRIPTOR,
cls.DESCRIPTOR.fields_by_name['optional_int32'])
self.assertEqual(cls.OPTIONAL_INT32_FIELD_NUMBER,
cls.optional_int32.DESCRIPTOR.number)
self.assertIs(cls.optional_nested_message.DESCRIPTOR,
cls.DESCRIPTOR.fields_by_name['optional_nested_message'])
self.assertEqual(cls.OPTIONAL_NESTED_MESSAGE_FIELD_NUMBER,
cls.optional_nested_message.DESCRIPTOR.number)
self.assertIs(cls.repeated_int32.DESCRIPTOR,
cls.DESCRIPTOR.fields_by_name['repeated_int32'])
self.assertEqual(cls.REPEATED_INT32_FIELD_NUMBER,
cls.repeated_int32.DESCRIPTOR.number)
def testFieldDataDescriptor(self):
msg = unittest_pb2.TestAllTypes()
msg.optional_int32 = 42
self.assertEqual(unittest_pb2.TestAllTypes.optional_int32.__get__(msg), 42)
unittest_pb2.TestAllTypes.optional_int32.__set__(msg, 25)
self.assertEqual(msg.optional_int32, 25)
with self.assertRaises(AttributeError):
del msg.optional_int32
try:
unittest_pb2.ForeignMessage.c.__get__(msg)
except TypeError:
pass # The cpp implementation cannot mix fields from other messages.
# This test exercises a specific check that avoids a crash.
else:
pass # The python implementation allows fields from other messages.
# This is useless, but works.
def testInitKwargs(self):
proto = unittest_pb2.TestAllTypes(
optional_int32=1,
optional_string='foo',
optional_bool=True,
optional_bytes=b'bar',
optional_nested_message=unittest_pb2.TestAllTypes.NestedMessage(bb=1),
optional_foreign_message=unittest_pb2.ForeignMessage(c=1),
optional_nested_enum=unittest_pb2.TestAllTypes.FOO,
optional_foreign_enum=unittest_pb2.FOREIGN_FOO,
repeated_int32=[1, 2, 3])
self.assertTrue(proto.IsInitialized())
self.assertTrue(proto.HasField('optional_int32'))
self.assertTrue(proto.HasField('optional_string'))
self.assertTrue(proto.HasField('optional_bool'))
self.assertTrue(proto.HasField('optional_bytes'))
self.assertTrue(proto.HasField('optional_nested_message'))
self.assertTrue(proto.HasField('optional_foreign_message'))
self.assertTrue(proto.HasField('optional_nested_enum'))
self.assertTrue(proto.HasField('optional_foreign_enum'))
self.assertEqual(1, proto.optional_int32)
self.assertEqual('foo', proto.optional_string)
self.assertEqual(True, proto.optional_bool)
self.assertEqual(b'bar', proto.optional_bytes)
self.assertEqual(1, proto.optional_nested_message.bb)
self.assertEqual(1, proto.optional_foreign_message.c)
self.assertEqual(unittest_pb2.TestAllTypes.FOO,
proto.optional_nested_enum)
self.assertEqual(unittest_pb2.FOREIGN_FOO, proto.optional_foreign_enum)
self.assertEqual([1, 2, 3], proto.repeated_int32)
def testInitArgsUnknownFieldName(self):
def InitalizeEmptyMessageWithExtraKeywordArg():
unused_proto = unittest_pb2.TestEmptyMessage(unknown='unknown')
self._CheckRaises(
ValueError,
InitalizeEmptyMessageWithExtraKeywordArg,
'Protocol message TestEmptyMessage has no "unknown" field.')
def testInitRequiredKwargs(self):
proto = unittest_pb2.TestRequired(a=1, b=1, c=1)
self.assertTrue(proto.IsInitialized())
self.assertTrue(proto.HasField('a'))
self.assertTrue(proto.HasField('b'))
self.assertTrue(proto.HasField('c'))
self.assertFalse(proto.HasField('dummy2'))
self.assertEqual(1, proto.a)
self.assertEqual(1, proto.b)
self.assertEqual(1, proto.c)
def testInitRequiredForeignKwargs(self):
proto = unittest_pb2.TestRequiredForeign(
optional_message=unittest_pb2.TestRequired(a=1, b=1, c=1))
self.assertTrue(proto.IsInitialized())
self.assertTrue(proto.HasField('optional_message'))
self.assertTrue(proto.optional_message.IsInitialized())
self.assertTrue(proto.optional_message.HasField('a'))
self.assertTrue(proto.optional_message.HasField('b'))
self.assertTrue(proto.optional_message.HasField('c'))
self.assertFalse(proto.optional_message.HasField('dummy2'))
self.assertEqual(unittest_pb2.TestRequired(a=1, b=1, c=1),
proto.optional_message)
self.assertEqual(1, proto.optional_message.a)
self.assertEqual(1, proto.optional_message.b)
self.assertEqual(1, proto.optional_message.c)
def testInitRepeatedKwargs(self):
proto = unittest_pb2.TestAllTypes(repeated_int32=[1, 2, 3])
self.assertTrue(proto.IsInitialized())
self.assertEqual(1, proto.repeated_int32[0])
self.assertEqual(2, proto.repeated_int32[1])
self.assertEqual(3, proto.repeated_int32[2])
@testing_refleaks.TestCase
class OptionsTest(unittest.TestCase):
def testMessageOptions(self):
proto = message_set_extensions_pb2.TestMessageSet()
self.assertEqual(True,
proto.DESCRIPTOR.GetOptions().message_set_wire_format)
proto = unittest_pb2.TestAllTypes()
self.assertEqual(False,
proto.DESCRIPTOR.GetOptions().message_set_wire_format)
def testPackedOptions(self):
proto = unittest_pb2.TestAllTypes()
proto.optional_int32 = 1
proto.optional_double = 3.0
for field_descriptor, _ in proto.ListFields():
self.assertEqual(False, field_descriptor.GetOptions().packed)
proto = unittest_pb2.TestPackedTypes()
proto.packed_int32.append(1)
proto.packed_double.append(3.0)
for field_descriptor, _ in proto.ListFields():
self.assertEqual(True, field_descriptor.GetOptions().packed)
self.assertEqual(descriptor.FieldDescriptor.LABEL_REPEATED,
field_descriptor.label)
@testing_refleaks.TestCase
class ClassAPITest(unittest.TestCase):
@unittest.skipIf(
api_implementation.Type() == 'cpp' and api_implementation.Version() == 2,
'C++ implementation requires a call to MakeDescriptor()')
@testing_refleaks.SkipReferenceLeakChecker('MakeClass is not repeatable')
def testMakeClassWithNestedDescriptor(self):
leaf_desc = descriptor.Descriptor(
'leaf', 'package.parent.child.leaf', '',
containing_type=None, fields=[],
nested_types=[], enum_types=[],
extensions=[],
# pylint: disable=protected-access
create_key=descriptor._internal_create_key)
child_desc = descriptor.Descriptor(
'child', 'package.parent.child', '',
containing_type=None, fields=[],
nested_types=[leaf_desc], enum_types=[],
extensions=[],
# pylint: disable=protected-access
create_key=descriptor._internal_create_key)
sibling_desc = descriptor.Descriptor(
'sibling', 'package.parent.sibling',
'', containing_type=None, fields=[],
nested_types=[], enum_types=[],
extensions=[],
# pylint: disable=protected-access
create_key=descriptor._internal_create_key)
parent_desc = descriptor.Descriptor(
'parent', 'package.parent', '',
containing_type=None, fields=[],
nested_types=[child_desc, sibling_desc],
enum_types=[], extensions=[],
# pylint: disable=protected-access
create_key=descriptor._internal_create_key)
reflection.MakeClass(parent_desc)
def _GetSerializedFileDescriptor(self, name):
"""Get a serialized representation of a test FileDescriptorProto.
Args:
name: All calls to this must use a unique message name, to avoid
collisions in the cpp descriptor pool.
Returns:
A string containing the serialized form of a test FileDescriptorProto.
"""
file_descriptor_str = (
'message_type {'
' name: "' + name + '"'
' field {'
' name: "flat"'
' number: 1'
' label: LABEL_REPEATED'
' type: TYPE_UINT32'
' }'
' field {'
' name: "bar"'
' number: 2'
' label: LABEL_OPTIONAL'
' type: TYPE_MESSAGE'
' type_name: "Bar"'
' }'
' nested_type {'
' name: "Bar"'
' field {'
' name: "baz"'
' number: 3'
' label: LABEL_OPTIONAL'
' type: TYPE_MESSAGE'
' type_name: "Baz"'
' }'
' nested_type {'
' name: "Baz"'
' enum_type {'
' name: "deep_enum"'
' value {'
' name: "VALUE_A"'
' number: 0'
' }'
' }'
' field {'
' name: "deep"'
' number: 4'
' label: LABEL_OPTIONAL'
' type: TYPE_UINT32'
' }'
' }'
' }'
'}')
file_descriptor = descriptor_pb2.FileDescriptorProto()
text_format.Merge(file_descriptor_str, file_descriptor)
return file_descriptor.SerializeToString()
@testing_refleaks.SkipReferenceLeakChecker('MakeDescriptor is not repeatable')
# This test can only run once; the second time, it raises errors about
# conflicting message descriptors.
def testParsingFlatClassWithExplicitClassDeclaration(self):
"""Test that the generated class can parse a flat message."""
# TODO(xiaofeng): This test fails with cpp implemetnation in the call
# of six.with_metaclass(). The other two callsites of with_metaclass
# in this file are both excluded from cpp test, so it might be expected
# to fail. Need someone more familiar with the python code to take a
# look at this.
if api_implementation.Type() != 'python':
return
file_descriptor = descriptor_pb2.FileDescriptorProto()
file_descriptor.ParseFromString(self._GetSerializedFileDescriptor('A'))
msg_descriptor = descriptor.MakeDescriptor(
file_descriptor.message_type[0])
class MessageClass(six.with_metaclass(reflection.GeneratedProtocolMessageType, message.Message)):
DESCRIPTOR = msg_descriptor
msg = MessageClass()
msg_str = (
'flat: 0 '
'flat: 1 '
'flat: 2 ')
text_format.Merge(msg_str, msg)
self.assertEqual(msg.flat, [0, 1, 2])
@testing_refleaks.SkipReferenceLeakChecker('MakeDescriptor is not repeatable')
def testParsingFlatClass(self):
"""Test that the generated class can parse a flat message."""
file_descriptor = descriptor_pb2.FileDescriptorProto()
file_descriptor.ParseFromString(self._GetSerializedFileDescriptor('B'))
msg_descriptor = descriptor.MakeDescriptor(
file_descriptor.message_type[0])
msg_class = reflection.MakeClass(msg_descriptor)
msg = msg_class()
msg_str = (
'flat: 0 '
'flat: 1 '
'flat: 2 ')
text_format.Merge(msg_str, msg)
self.assertEqual(msg.flat, [0, 1, 2])
@testing_refleaks.SkipReferenceLeakChecker('MakeDescriptor is not repeatable')
def testParsingNestedClass(self):
"""Test that the generated class can parse a nested message."""
file_descriptor = descriptor_pb2.FileDescriptorProto()
file_descriptor.ParseFromString(self._GetSerializedFileDescriptor('C'))
msg_descriptor = descriptor.MakeDescriptor(
file_descriptor.message_type[0])
msg_class = reflection.MakeClass(msg_descriptor)
msg = msg_class()
msg_str = (
'bar {'
' baz {'
' deep: 4'
' }'
'}')
text_format.Merge(msg_str, msg)
self.assertEqual(msg.bar.baz.deep, 4)
if __name__ == '__main__':
unittest.main()