mirror of https://github.com/sgoudham/Enso-Bot.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
810 lines
27 KiB
Python
810 lines
27 KiB
Python
4 years ago
|
#
|
||
|
# The Python Imaging Library.
|
||
|
# $Id$
|
||
|
#
|
||
|
# JPEG (JFIF) file handling
|
||
|
#
|
||
|
# See "Digital Compression and Coding of Continuous-Tone Still Images,
|
||
|
# Part 1, Requirements and Guidelines" (CCITT T.81 / ISO 10918-1)
|
||
|
#
|
||
|
# History:
|
||
|
# 1995-09-09 fl Created
|
||
|
# 1995-09-13 fl Added full parser
|
||
|
# 1996-03-25 fl Added hack to use the IJG command line utilities
|
||
|
# 1996-05-05 fl Workaround Photoshop 2.5 CMYK polarity bug
|
||
|
# 1996-05-28 fl Added draft support, JFIF version (0.1)
|
||
|
# 1996-12-30 fl Added encoder options, added progression property (0.2)
|
||
|
# 1997-08-27 fl Save mode 1 images as BW (0.3)
|
||
|
# 1998-07-12 fl Added YCbCr to draft and save methods (0.4)
|
||
|
# 1998-10-19 fl Don't hang on files using 16-bit DQT's (0.4.1)
|
||
|
# 2001-04-16 fl Extract DPI settings from JFIF files (0.4.2)
|
||
|
# 2002-07-01 fl Skip pad bytes before markers; identify Exif files (0.4.3)
|
||
|
# 2003-04-25 fl Added experimental EXIF decoder (0.5)
|
||
|
# 2003-06-06 fl Added experimental EXIF GPSinfo decoder
|
||
|
# 2003-09-13 fl Extract COM markers
|
||
|
# 2009-09-06 fl Added icc_profile support (from Florian Hoech)
|
||
|
# 2009-03-06 fl Changed CMYK handling; always use Adobe polarity (0.6)
|
||
|
# 2009-03-08 fl Added subsampling support (from Justin Huff).
|
||
|
#
|
||
|
# Copyright (c) 1997-2003 by Secret Labs AB.
|
||
|
# Copyright (c) 1995-1996 by Fredrik Lundh.
|
||
|
#
|
||
|
# See the README file for information on usage and redistribution.
|
||
|
#
|
||
|
import array
|
||
|
import io
|
||
|
import os
|
||
|
import struct
|
||
|
import subprocess
|
||
|
import tempfile
|
||
|
import warnings
|
||
|
|
||
|
from . import Image, ImageFile, TiffImagePlugin
|
||
|
from ._binary import i8, i16be as i16, i32be as i32, o8
|
||
|
from .JpegPresets import presets
|
||
|
|
||
|
#
|
||
|
# Parser
|
||
|
|
||
|
|
||
|
def Skip(self, marker):
|
||
|
n = i16(self.fp.read(2)) - 2
|
||
|
ImageFile._safe_read(self.fp, n)
|
||
|
|
||
|
|
||
|
def APP(self, marker):
|
||
|
#
|
||
|
# Application marker. Store these in the APP dictionary.
|
||
|
# Also look for well-known application markers.
|
||
|
|
||
|
n = i16(self.fp.read(2)) - 2
|
||
|
s = ImageFile._safe_read(self.fp, n)
|
||
|
|
||
|
app = "APP%d" % (marker & 15)
|
||
|
|
||
|
self.app[app] = s # compatibility
|
||
|
self.applist.append((app, s))
|
||
|
|
||
|
if marker == 0xFFE0 and s[:4] == b"JFIF":
|
||
|
# extract JFIF information
|
||
|
self.info["jfif"] = version = i16(s, 5) # version
|
||
|
self.info["jfif_version"] = divmod(version, 256)
|
||
|
# extract JFIF properties
|
||
|
try:
|
||
|
jfif_unit = i8(s[7])
|
||
|
jfif_density = i16(s, 8), i16(s, 10)
|
||
|
except Exception:
|
||
|
pass
|
||
|
else:
|
||
|
if jfif_unit == 1:
|
||
|
self.info["dpi"] = jfif_density
|
||
|
self.info["jfif_unit"] = jfif_unit
|
||
|
self.info["jfif_density"] = jfif_density
|
||
|
elif marker == 0xFFE1 and s[:5] == b"Exif\0":
|
||
|
if "exif" not in self.info:
|
||
|
# extract EXIF information (incomplete)
|
||
|
self.info["exif"] = s # FIXME: value will change
|
||
|
elif marker == 0xFFE2 and s[:5] == b"FPXR\0":
|
||
|
# extract FlashPix information (incomplete)
|
||
|
self.info["flashpix"] = s # FIXME: value will change
|
||
|
elif marker == 0xFFE2 and s[:12] == b"ICC_PROFILE\0":
|
||
|
# Since an ICC profile can be larger than the maximum size of
|
||
|
# a JPEG marker (64K), we need provisions to split it into
|
||
|
# multiple markers. The format defined by the ICC specifies
|
||
|
# one or more APP2 markers containing the following data:
|
||
|
# Identifying string ASCII "ICC_PROFILE\0" (12 bytes)
|
||
|
# Marker sequence number 1, 2, etc (1 byte)
|
||
|
# Number of markers Total of APP2's used (1 byte)
|
||
|
# Profile data (remainder of APP2 data)
|
||
|
# Decoders should use the marker sequence numbers to
|
||
|
# reassemble the profile, rather than assuming that the APP2
|
||
|
# markers appear in the correct sequence.
|
||
|
self.icclist.append(s)
|
||
|
elif marker == 0xFFED and s[:14] == b"Photoshop 3.0\x00":
|
||
|
# parse the image resource block
|
||
|
offset = 14
|
||
|
photoshop = self.info.setdefault("photoshop", {})
|
||
|
while s[offset : offset + 4] == b"8BIM":
|
||
|
try:
|
||
|
offset += 4
|
||
|
# resource code
|
||
|
code = i16(s, offset)
|
||
|
offset += 2
|
||
|
# resource name (usually empty)
|
||
|
name_len = i8(s[offset])
|
||
|
# name = s[offset+1:offset+1+name_len]
|
||
|
offset += 1 + name_len
|
||
|
offset += offset & 1 # align
|
||
|
# resource data block
|
||
|
size = i32(s, offset)
|
||
|
offset += 4
|
||
|
data = s[offset : offset + size]
|
||
|
if code == 0x03ED: # ResolutionInfo
|
||
|
data = {
|
||
|
"XResolution": i32(data[:4]) / 65536,
|
||
|
"DisplayedUnitsX": i16(data[4:8]),
|
||
|
"YResolution": i32(data[8:12]) / 65536,
|
||
|
"DisplayedUnitsY": i16(data[12:]),
|
||
|
}
|
||
|
photoshop[code] = data
|
||
|
offset += size
|
||
|
offset += offset & 1 # align
|
||
|
except struct.error:
|
||
|
break # insufficient data
|
||
|
|
||
|
elif marker == 0xFFEE and s[:5] == b"Adobe":
|
||
|
self.info["adobe"] = i16(s, 5)
|
||
|
# extract Adobe custom properties
|
||
|
try:
|
||
|
adobe_transform = i8(s[1])
|
||
|
except Exception:
|
||
|
pass
|
||
|
else:
|
||
|
self.info["adobe_transform"] = adobe_transform
|
||
|
elif marker == 0xFFE2 and s[:4] == b"MPF\0":
|
||
|
# extract MPO information
|
||
|
self.info["mp"] = s[4:]
|
||
|
# offset is current location minus buffer size
|
||
|
# plus constant header size
|
||
|
self.info["mpoffset"] = self.fp.tell() - n + 4
|
||
|
|
||
|
# If DPI isn't in JPEG header, fetch from EXIF
|
||
|
if "dpi" not in self.info and "exif" in self.info:
|
||
|
try:
|
||
|
exif = self.getexif()
|
||
|
resolution_unit = exif[0x0128]
|
||
|
x_resolution = exif[0x011A]
|
||
|
try:
|
||
|
dpi = float(x_resolution[0]) / x_resolution[1]
|
||
|
except TypeError:
|
||
|
dpi = x_resolution
|
||
|
if resolution_unit == 3: # cm
|
||
|
# 1 dpcm = 2.54 dpi
|
||
|
dpi *= 2.54
|
||
|
self.info["dpi"] = int(dpi + 0.5), int(dpi + 0.5)
|
||
|
except (KeyError, SyntaxError, ValueError, ZeroDivisionError):
|
||
|
# SyntaxError for invalid/unreadable EXIF
|
||
|
# KeyError for dpi not included
|
||
|
# ZeroDivisionError for invalid dpi rational value
|
||
|
# ValueError for x_resolution[0] being an invalid float
|
||
|
self.info["dpi"] = 72, 72
|
||
|
|
||
|
|
||
|
def COM(self, marker):
|
||
|
#
|
||
|
# Comment marker. Store these in the APP dictionary.
|
||
|
n = i16(self.fp.read(2)) - 2
|
||
|
s = ImageFile._safe_read(self.fp, n)
|
||
|
|
||
|
self.info["comment"] = s
|
||
|
self.app["COM"] = s # compatibility
|
||
|
self.applist.append(("COM", s))
|
||
|
|
||
|
|
||
|
def SOF(self, marker):
|
||
|
#
|
||
|
# Start of frame marker. Defines the size and mode of the
|
||
|
# image. JPEG is colour blind, so we use some simple
|
||
|
# heuristics to map the number of layers to an appropriate
|
||
|
# mode. Note that this could be made a bit brighter, by
|
||
|
# looking for JFIF and Adobe APP markers.
|
||
|
|
||
|
n = i16(self.fp.read(2)) - 2
|
||
|
s = ImageFile._safe_read(self.fp, n)
|
||
|
self._size = i16(s[3:]), i16(s[1:])
|
||
|
|
||
|
self.bits = i8(s[0])
|
||
|
if self.bits != 8:
|
||
|
raise SyntaxError("cannot handle %d-bit layers" % self.bits)
|
||
|
|
||
|
self.layers = i8(s[5])
|
||
|
if self.layers == 1:
|
||
|
self.mode = "L"
|
||
|
elif self.layers == 3:
|
||
|
self.mode = "RGB"
|
||
|
elif self.layers == 4:
|
||
|
self.mode = "CMYK"
|
||
|
else:
|
||
|
raise SyntaxError("cannot handle %d-layer images" % self.layers)
|
||
|
|
||
|
if marker in [0xFFC2, 0xFFC6, 0xFFCA, 0xFFCE]:
|
||
|
self.info["progressive"] = self.info["progression"] = 1
|
||
|
|
||
|
if self.icclist:
|
||
|
# fixup icc profile
|
||
|
self.icclist.sort() # sort by sequence number
|
||
|
if i8(self.icclist[0][13]) == len(self.icclist):
|
||
|
profile = []
|
||
|
for p in self.icclist:
|
||
|
profile.append(p[14:])
|
||
|
icc_profile = b"".join(profile)
|
||
|
else:
|
||
|
icc_profile = None # wrong number of fragments
|
||
|
self.info["icc_profile"] = icc_profile
|
||
|
self.icclist = []
|
||
|
|
||
|
for i in range(6, len(s), 3):
|
||
|
t = s[i : i + 3]
|
||
|
# 4-tuples: id, vsamp, hsamp, qtable
|
||
|
self.layer.append((t[0], i8(t[1]) // 16, i8(t[1]) & 15, i8(t[2])))
|
||
|
|
||
|
|
||
|
def DQT(self, marker):
|
||
|
#
|
||
|
# Define quantization table. Support baseline 8-bit tables
|
||
|
# only. Note that there might be more than one table in
|
||
|
# each marker.
|
||
|
|
||
|
# FIXME: The quantization tables can be used to estimate the
|
||
|
# compression quality.
|
||
|
|
||
|
n = i16(self.fp.read(2)) - 2
|
||
|
s = ImageFile._safe_read(self.fp, n)
|
||
|
while len(s):
|
||
|
if len(s) < 65:
|
||
|
raise SyntaxError("bad quantization table marker")
|
||
|
v = i8(s[0])
|
||
|
if v // 16 == 0:
|
||
|
self.quantization[v & 15] = array.array("B", s[1:65])
|
||
|
s = s[65:]
|
||
|
else:
|
||
|
return # FIXME: add code to read 16-bit tables!
|
||
|
# raise SyntaxError, "bad quantization table element size"
|
||
|
|
||
|
|
||
|
#
|
||
|
# JPEG marker table
|
||
|
|
||
|
MARKER = {
|
||
|
0xFFC0: ("SOF0", "Baseline DCT", SOF),
|
||
|
0xFFC1: ("SOF1", "Extended Sequential DCT", SOF),
|
||
|
0xFFC2: ("SOF2", "Progressive DCT", SOF),
|
||
|
0xFFC3: ("SOF3", "Spatial lossless", SOF),
|
||
|
0xFFC4: ("DHT", "Define Huffman table", Skip),
|
||
|
0xFFC5: ("SOF5", "Differential sequential DCT", SOF),
|
||
|
0xFFC6: ("SOF6", "Differential progressive DCT", SOF),
|
||
|
0xFFC7: ("SOF7", "Differential spatial", SOF),
|
||
|
0xFFC8: ("JPG", "Extension", None),
|
||
|
0xFFC9: ("SOF9", "Extended sequential DCT (AC)", SOF),
|
||
|
0xFFCA: ("SOF10", "Progressive DCT (AC)", SOF),
|
||
|
0xFFCB: ("SOF11", "Spatial lossless DCT (AC)", SOF),
|
||
|
0xFFCC: ("DAC", "Define arithmetic coding conditioning", Skip),
|
||
|
0xFFCD: ("SOF13", "Differential sequential DCT (AC)", SOF),
|
||
|
0xFFCE: ("SOF14", "Differential progressive DCT (AC)", SOF),
|
||
|
0xFFCF: ("SOF15", "Differential spatial (AC)", SOF),
|
||
|
0xFFD0: ("RST0", "Restart 0", None),
|
||
|
0xFFD1: ("RST1", "Restart 1", None),
|
||
|
0xFFD2: ("RST2", "Restart 2", None),
|
||
|
0xFFD3: ("RST3", "Restart 3", None),
|
||
|
0xFFD4: ("RST4", "Restart 4", None),
|
||
|
0xFFD5: ("RST5", "Restart 5", None),
|
||
|
0xFFD6: ("RST6", "Restart 6", None),
|
||
|
0xFFD7: ("RST7", "Restart 7", None),
|
||
|
0xFFD8: ("SOI", "Start of image", None),
|
||
|
0xFFD9: ("EOI", "End of image", None),
|
||
|
0xFFDA: ("SOS", "Start of scan", Skip),
|
||
|
0xFFDB: ("DQT", "Define quantization table", DQT),
|
||
|
0xFFDC: ("DNL", "Define number of lines", Skip),
|
||
|
0xFFDD: ("DRI", "Define restart interval", Skip),
|
||
|
0xFFDE: ("DHP", "Define hierarchical progression", SOF),
|
||
|
0xFFDF: ("EXP", "Expand reference component", Skip),
|
||
|
0xFFE0: ("APP0", "Application segment 0", APP),
|
||
|
0xFFE1: ("APP1", "Application segment 1", APP),
|
||
|
0xFFE2: ("APP2", "Application segment 2", APP),
|
||
|
0xFFE3: ("APP3", "Application segment 3", APP),
|
||
|
0xFFE4: ("APP4", "Application segment 4", APP),
|
||
|
0xFFE5: ("APP5", "Application segment 5", APP),
|
||
|
0xFFE6: ("APP6", "Application segment 6", APP),
|
||
|
0xFFE7: ("APP7", "Application segment 7", APP),
|
||
|
0xFFE8: ("APP8", "Application segment 8", APP),
|
||
|
0xFFE9: ("APP9", "Application segment 9", APP),
|
||
|
0xFFEA: ("APP10", "Application segment 10", APP),
|
||
|
0xFFEB: ("APP11", "Application segment 11", APP),
|
||
|
0xFFEC: ("APP12", "Application segment 12", APP),
|
||
|
0xFFED: ("APP13", "Application segment 13", APP),
|
||
|
0xFFEE: ("APP14", "Application segment 14", APP),
|
||
|
0xFFEF: ("APP15", "Application segment 15", APP),
|
||
|
0xFFF0: ("JPG0", "Extension 0", None),
|
||
|
0xFFF1: ("JPG1", "Extension 1", None),
|
||
|
0xFFF2: ("JPG2", "Extension 2", None),
|
||
|
0xFFF3: ("JPG3", "Extension 3", None),
|
||
|
0xFFF4: ("JPG4", "Extension 4", None),
|
||
|
0xFFF5: ("JPG5", "Extension 5", None),
|
||
|
0xFFF6: ("JPG6", "Extension 6", None),
|
||
|
0xFFF7: ("JPG7", "Extension 7", None),
|
||
|
0xFFF8: ("JPG8", "Extension 8", None),
|
||
|
0xFFF9: ("JPG9", "Extension 9", None),
|
||
|
0xFFFA: ("JPG10", "Extension 10", None),
|
||
|
0xFFFB: ("JPG11", "Extension 11", None),
|
||
|
0xFFFC: ("JPG12", "Extension 12", None),
|
||
|
0xFFFD: ("JPG13", "Extension 13", None),
|
||
|
0xFFFE: ("COM", "Comment", COM),
|
||
|
}
|
||
|
|
||
|
|
||
|
def _accept(prefix):
|
||
|
# Magic number was taken from https://en.wikipedia.org/wiki/JPEG
|
||
|
return prefix[0:3] == b"\xFF\xD8\xFF"
|
||
|
|
||
|
|
||
|
##
|
||
|
# Image plugin for JPEG and JFIF images.
|
||
|
|
||
|
|
||
|
class JpegImageFile(ImageFile.ImageFile):
|
||
|
|
||
|
format = "JPEG"
|
||
|
format_description = "JPEG (ISO 10918)"
|
||
|
|
||
|
def _open(self):
|
||
|
|
||
|
s = self.fp.read(3)
|
||
|
|
||
|
if not _accept(s):
|
||
|
raise SyntaxError("not a JPEG file")
|
||
|
s = b"\xFF"
|
||
|
|
||
|
# Create attributes
|
||
|
self.bits = self.layers = 0
|
||
|
|
||
|
# JPEG specifics (internal)
|
||
|
self.layer = []
|
||
|
self.huffman_dc = {}
|
||
|
self.huffman_ac = {}
|
||
|
self.quantization = {}
|
||
|
self.app = {} # compatibility
|
||
|
self.applist = []
|
||
|
self.icclist = []
|
||
|
|
||
|
while True:
|
||
|
|
||
|
i = i8(s)
|
||
|
if i == 0xFF:
|
||
|
s = s + self.fp.read(1)
|
||
|
i = i16(s)
|
||
|
else:
|
||
|
# Skip non-0xFF junk
|
||
|
s = self.fp.read(1)
|
||
|
continue
|
||
|
|
||
|
if i in MARKER:
|
||
|
name, description, handler = MARKER[i]
|
||
|
if handler is not None:
|
||
|
handler(self, i)
|
||
|
if i == 0xFFDA: # start of scan
|
||
|
rawmode = self.mode
|
||
|
if self.mode == "CMYK":
|
||
|
rawmode = "CMYK;I" # assume adobe conventions
|
||
|
self.tile = [("jpeg", (0, 0) + self.size, 0, (rawmode, ""))]
|
||
|
# self.__offset = self.fp.tell()
|
||
|
break
|
||
|
s = self.fp.read(1)
|
||
|
elif i == 0 or i == 0xFFFF:
|
||
|
# padded marker or junk; move on
|
||
|
s = b"\xff"
|
||
|
elif i == 0xFF00: # Skip extraneous data (escaped 0xFF)
|
||
|
s = self.fp.read(1)
|
||
|
else:
|
||
|
raise SyntaxError("no marker found")
|
||
|
|
||
|
def load_read(self, read_bytes):
|
||
|
"""
|
||
|
internal: read more image data
|
||
|
For premature EOF and LOAD_TRUNCATED_IMAGES adds EOI marker
|
||
|
so libjpeg can finish decoding
|
||
|
"""
|
||
|
s = self.fp.read(read_bytes)
|
||
|
|
||
|
if not s and ImageFile.LOAD_TRUNCATED_IMAGES:
|
||
|
# Premature EOF.
|
||
|
# Pretend file is finished adding EOI marker
|
||
|
return b"\xFF\xD9"
|
||
|
|
||
|
return s
|
||
|
|
||
|
def draft(self, mode, size):
|
||
|
|
||
|
if len(self.tile) != 1:
|
||
|
return
|
||
|
|
||
|
# Protect from second call
|
||
|
if self.decoderconfig:
|
||
|
return
|
||
|
|
||
|
d, e, o, a = self.tile[0]
|
||
|
scale = 1
|
||
|
original_size = self.size
|
||
|
|
||
|
if a[0] == "RGB" and mode in ["L", "YCbCr"]:
|
||
|
self.mode = mode
|
||
|
a = mode, ""
|
||
|
|
||
|
if size:
|
||
|
scale = min(self.size[0] // size[0], self.size[1] // size[1])
|
||
|
for s in [8, 4, 2, 1]:
|
||
|
if scale >= s:
|
||
|
break
|
||
|
e = (
|
||
|
e[0],
|
||
|
e[1],
|
||
|
(e[2] - e[0] + s - 1) // s + e[0],
|
||
|
(e[3] - e[1] + s - 1) // s + e[1],
|
||
|
)
|
||
|
self._size = ((self.size[0] + s - 1) // s, (self.size[1] + s - 1) // s)
|
||
|
scale = s
|
||
|
|
||
|
self.tile = [(d, e, o, a)]
|
||
|
self.decoderconfig = (scale, 0)
|
||
|
|
||
|
box = (0, 0, original_size[0] / scale, original_size[1] / scale)
|
||
|
return (self.mode, box)
|
||
|
|
||
|
def load_djpeg(self):
|
||
|
|
||
|
# ALTERNATIVE: handle JPEGs via the IJG command line utilities
|
||
|
|
||
|
f, path = tempfile.mkstemp()
|
||
|
os.close(f)
|
||
|
if os.path.exists(self.filename):
|
||
|
subprocess.check_call(["djpeg", "-outfile", path, self.filename])
|
||
|
else:
|
||
|
raise ValueError("Invalid Filename")
|
||
|
|
||
|
try:
|
||
|
with Image.open(path) as _im:
|
||
|
_im.load()
|
||
|
self.im = _im.im
|
||
|
finally:
|
||
|
try:
|
||
|
os.unlink(path)
|
||
|
except OSError:
|
||
|
pass
|
||
|
|
||
|
self.mode = self.im.mode
|
||
|
self._size = self.im.size
|
||
|
|
||
|
self.tile = []
|
||
|
|
||
|
def _getexif(self):
|
||
|
return _getexif(self)
|
||
|
|
||
|
def _getmp(self):
|
||
|
return _getmp(self)
|
||
|
|
||
|
|
||
|
def _fixup_dict(src_dict):
|
||
|
# Helper function for _getexif()
|
||
|
# returns a dict with any single item tuples/lists as individual values
|
||
|
exif = Image.Exif()
|
||
|
return exif._fixup_dict(src_dict)
|
||
|
|
||
|
|
||
|
def _getexif(self):
|
||
|
if "exif" not in self.info:
|
||
|
return None
|
||
|
return dict(self.getexif())
|
||
|
|
||
|
|
||
|
def _getmp(self):
|
||
|
# Extract MP information. This method was inspired by the "highly
|
||
|
# experimental" _getexif version that's been in use for years now,
|
||
|
# itself based on the ImageFileDirectory class in the TIFF plug-in.
|
||
|
|
||
|
# The MP record essentially consists of a TIFF file embedded in a JPEG
|
||
|
# application marker.
|
||
|
try:
|
||
|
data = self.info["mp"]
|
||
|
except KeyError:
|
||
|
return None
|
||
|
file_contents = io.BytesIO(data)
|
||
|
head = file_contents.read(8)
|
||
|
endianness = ">" if head[:4] == b"\x4d\x4d\x00\x2a" else "<"
|
||
|
# process dictionary
|
||
|
try:
|
||
|
info = TiffImagePlugin.ImageFileDirectory_v2(head)
|
||
|
file_contents.seek(info.next)
|
||
|
info.load(file_contents)
|
||
|
mp = dict(info)
|
||
|
except Exception as e:
|
||
|
raise SyntaxError("malformed MP Index (unreadable directory)") from e
|
||
|
# it's an error not to have a number of images
|
||
|
try:
|
||
|
quant = mp[0xB001]
|
||
|
except KeyError as e:
|
||
|
raise SyntaxError("malformed MP Index (no number of images)") from e
|
||
|
# get MP entries
|
||
|
mpentries = []
|
||
|
try:
|
||
|
rawmpentries = mp[0xB002]
|
||
|
for entrynum in range(0, quant):
|
||
|
unpackedentry = struct.unpack_from(
|
||
|
"{}LLLHH".format(endianness), rawmpentries, entrynum * 16
|
||
|
)
|
||
|
labels = ("Attribute", "Size", "DataOffset", "EntryNo1", "EntryNo2")
|
||
|
mpentry = dict(zip(labels, unpackedentry))
|
||
|
mpentryattr = {
|
||
|
"DependentParentImageFlag": bool(mpentry["Attribute"] & (1 << 31)),
|
||
|
"DependentChildImageFlag": bool(mpentry["Attribute"] & (1 << 30)),
|
||
|
"RepresentativeImageFlag": bool(mpentry["Attribute"] & (1 << 29)),
|
||
|
"Reserved": (mpentry["Attribute"] & (3 << 27)) >> 27,
|
||
|
"ImageDataFormat": (mpentry["Attribute"] & (7 << 24)) >> 24,
|
||
|
"MPType": mpentry["Attribute"] & 0x00FFFFFF,
|
||
|
}
|
||
|
if mpentryattr["ImageDataFormat"] == 0:
|
||
|
mpentryattr["ImageDataFormat"] = "JPEG"
|
||
|
else:
|
||
|
raise SyntaxError("unsupported picture format in MPO")
|
||
|
mptypemap = {
|
||
|
0x000000: "Undefined",
|
||
|
0x010001: "Large Thumbnail (VGA Equivalent)",
|
||
|
0x010002: "Large Thumbnail (Full HD Equivalent)",
|
||
|
0x020001: "Multi-Frame Image (Panorama)",
|
||
|
0x020002: "Multi-Frame Image: (Disparity)",
|
||
|
0x020003: "Multi-Frame Image: (Multi-Angle)",
|
||
|
0x030000: "Baseline MP Primary Image",
|
||
|
}
|
||
|
mpentryattr["MPType"] = mptypemap.get(mpentryattr["MPType"], "Unknown")
|
||
|
mpentry["Attribute"] = mpentryattr
|
||
|
mpentries.append(mpentry)
|
||
|
mp[0xB002] = mpentries
|
||
|
except KeyError as e:
|
||
|
raise SyntaxError("malformed MP Index (bad MP Entry)") from e
|
||
|
# Next we should try and parse the individual image unique ID list;
|
||
|
# we don't because I've never seen this actually used in a real MPO
|
||
|
# file and so can't test it.
|
||
|
return mp
|
||
|
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# stuff to save JPEG files
|
||
|
|
||
|
RAWMODE = {
|
||
|
"1": "L",
|
||
|
"L": "L",
|
||
|
"RGB": "RGB",
|
||
|
"RGBX": "RGB",
|
||
|
"CMYK": "CMYK;I", # assume adobe conventions
|
||
|
"YCbCr": "YCbCr",
|
||
|
}
|
||
|
|
||
|
# fmt: off
|
||
|
zigzag_index = (
|
||
|
0, 1, 5, 6, 14, 15, 27, 28,
|
||
|
2, 4, 7, 13, 16, 26, 29, 42,
|
||
|
3, 8, 12, 17, 25, 30, 41, 43,
|
||
|
9, 11, 18, 24, 31, 40, 44, 53,
|
||
|
10, 19, 23, 32, 39, 45, 52, 54,
|
||
|
20, 22, 33, 38, 46, 51, 55, 60,
|
||
|
21, 34, 37, 47, 50, 56, 59, 61,
|
||
|
35, 36, 48, 49, 57, 58, 62, 63,
|
||
|
)
|
||
|
|
||
|
samplings = {
|
||
|
(1, 1, 1, 1, 1, 1): 0,
|
||
|
(2, 1, 1, 1, 1, 1): 1,
|
||
|
(2, 2, 1, 1, 1, 1): 2,
|
||
|
}
|
||
|
# fmt: on
|
||
|
|
||
|
|
||
|
def convert_dict_qtables(qtables):
|
||
|
qtables = [qtables[key] for key in range(len(qtables)) if key in qtables]
|
||
|
for idx, table in enumerate(qtables):
|
||
|
qtables[idx] = [table[i] for i in zigzag_index]
|
||
|
return qtables
|
||
|
|
||
|
|
||
|
def get_sampling(im):
|
||
|
# There's no subsampling when images have only 1 layer
|
||
|
# (grayscale images) or when they are CMYK (4 layers),
|
||
|
# so set subsampling to the default value.
|
||
|
#
|
||
|
# NOTE: currently Pillow can't encode JPEG to YCCK format.
|
||
|
# If YCCK support is added in the future, subsampling code will have
|
||
|
# to be updated (here and in JpegEncode.c) to deal with 4 layers.
|
||
|
if not hasattr(im, "layers") or im.layers in (1, 4):
|
||
|
return -1
|
||
|
sampling = im.layer[0][1:3] + im.layer[1][1:3] + im.layer[2][1:3]
|
||
|
return samplings.get(sampling, -1)
|
||
|
|
||
|
|
||
|
def _save(im, fp, filename):
|
||
|
|
||
|
try:
|
||
|
rawmode = RAWMODE[im.mode]
|
||
|
except KeyError as e:
|
||
|
raise OSError("cannot write mode %s as JPEG" % im.mode) from e
|
||
|
|
||
|
info = im.encoderinfo
|
||
|
|
||
|
dpi = [round(x) for x in info.get("dpi", (0, 0))]
|
||
|
|
||
|
quality = info.get("quality", -1)
|
||
|
subsampling = info.get("subsampling", -1)
|
||
|
qtables = info.get("qtables")
|
||
|
|
||
|
if quality == "keep":
|
||
|
quality = -1
|
||
|
subsampling = "keep"
|
||
|
qtables = "keep"
|
||
|
elif quality in presets:
|
||
|
preset = presets[quality]
|
||
|
quality = -1
|
||
|
subsampling = preset.get("subsampling", -1)
|
||
|
qtables = preset.get("quantization")
|
||
|
elif not isinstance(quality, int):
|
||
|
raise ValueError("Invalid quality setting")
|
||
|
else:
|
||
|
if subsampling in presets:
|
||
|
subsampling = presets[subsampling].get("subsampling", -1)
|
||
|
if isinstance(qtables, str) and qtables in presets:
|
||
|
qtables = presets[qtables].get("quantization")
|
||
|
|
||
|
if subsampling == "4:4:4":
|
||
|
subsampling = 0
|
||
|
elif subsampling == "4:2:2":
|
||
|
subsampling = 1
|
||
|
elif subsampling == "4:2:0":
|
||
|
subsampling = 2
|
||
|
elif subsampling == "4:1:1":
|
||
|
# For compatibility. Before Pillow 4.3, 4:1:1 actually meant 4:2:0.
|
||
|
# Set 4:2:0 if someone is still using that value.
|
||
|
subsampling = 2
|
||
|
elif subsampling == "keep":
|
||
|
if im.format != "JPEG":
|
||
|
raise ValueError("Cannot use 'keep' when original image is not a JPEG")
|
||
|
subsampling = get_sampling(im)
|
||
|
|
||
|
def validate_qtables(qtables):
|
||
|
if qtables is None:
|
||
|
return qtables
|
||
|
if isinstance(qtables, str):
|
||
|
try:
|
||
|
lines = [
|
||
|
int(num)
|
||
|
for line in qtables.splitlines()
|
||
|
for num in line.split("#", 1)[0].split()
|
||
|
]
|
||
|
except ValueError as e:
|
||
|
raise ValueError("Invalid quantization table") from e
|
||
|
else:
|
||
|
qtables = [lines[s : s + 64] for s in range(0, len(lines), 64)]
|
||
|
if isinstance(qtables, (tuple, list, dict)):
|
||
|
if isinstance(qtables, dict):
|
||
|
qtables = convert_dict_qtables(qtables)
|
||
|
elif isinstance(qtables, tuple):
|
||
|
qtables = list(qtables)
|
||
|
if not (0 < len(qtables) < 5):
|
||
|
raise ValueError("None or too many quantization tables")
|
||
|
for idx, table in enumerate(qtables):
|
||
|
try:
|
||
|
if len(table) != 64:
|
||
|
raise TypeError
|
||
|
table = array.array("B", table)
|
||
|
except TypeError as e:
|
||
|
raise ValueError("Invalid quantization table") from e
|
||
|
else:
|
||
|
qtables[idx] = list(table)
|
||
|
return qtables
|
||
|
|
||
|
if qtables == "keep":
|
||
|
if im.format != "JPEG":
|
||
|
raise ValueError("Cannot use 'keep' when original image is not a JPEG")
|
||
|
qtables = getattr(im, "quantization", None)
|
||
|
qtables = validate_qtables(qtables)
|
||
|
|
||
|
extra = b""
|
||
|
|
||
|
icc_profile = info.get("icc_profile")
|
||
|
if icc_profile:
|
||
|
ICC_OVERHEAD_LEN = 14
|
||
|
MAX_BYTES_IN_MARKER = 65533
|
||
|
MAX_DATA_BYTES_IN_MARKER = MAX_BYTES_IN_MARKER - ICC_OVERHEAD_LEN
|
||
|
markers = []
|
||
|
while icc_profile:
|
||
|
markers.append(icc_profile[:MAX_DATA_BYTES_IN_MARKER])
|
||
|
icc_profile = icc_profile[MAX_DATA_BYTES_IN_MARKER:]
|
||
|
i = 1
|
||
|
for marker in markers:
|
||
|
size = struct.pack(">H", 2 + ICC_OVERHEAD_LEN + len(marker))
|
||
|
extra += (
|
||
|
b"\xFF\xE2"
|
||
|
+ size
|
||
|
+ b"ICC_PROFILE\0"
|
||
|
+ o8(i)
|
||
|
+ o8(len(markers))
|
||
|
+ marker
|
||
|
)
|
||
|
i += 1
|
||
|
|
||
|
# "progressive" is the official name, but older documentation
|
||
|
# says "progression"
|
||
|
# FIXME: issue a warning if the wrong form is used (post-1.1.7)
|
||
|
progressive = info.get("progressive", False) or info.get("progression", False)
|
||
|
|
||
|
optimize = info.get("optimize", False)
|
||
|
|
||
|
exif = info.get("exif", b"")
|
||
|
if isinstance(exif, Image.Exif):
|
||
|
exif = exif.tobytes()
|
||
|
|
||
|
# get keyword arguments
|
||
|
im.encoderconfig = (
|
||
|
quality,
|
||
|
progressive,
|
||
|
info.get("smooth", 0),
|
||
|
optimize,
|
||
|
info.get("streamtype", 0),
|
||
|
dpi[0],
|
||
|
dpi[1],
|
||
|
subsampling,
|
||
|
qtables,
|
||
|
extra,
|
||
|
exif,
|
||
|
)
|
||
|
|
||
|
# if we optimize, libjpeg needs a buffer big enough to hold the whole image
|
||
|
# in a shot. Guessing on the size, at im.size bytes. (raw pixel size is
|
||
|
# channels*size, this is a value that's been used in a django patch.
|
||
|
# https://github.com/matthewwithanm/django-imagekit/issues/50
|
||
|
bufsize = 0
|
||
|
if optimize or progressive:
|
||
|
# CMYK can be bigger
|
||
|
if im.mode == "CMYK":
|
||
|
bufsize = 4 * im.size[0] * im.size[1]
|
||
|
# keep sets quality to -1, but the actual value may be high.
|
||
|
elif quality >= 95 or quality == -1:
|
||
|
bufsize = 2 * im.size[0] * im.size[1]
|
||
|
else:
|
||
|
bufsize = im.size[0] * im.size[1]
|
||
|
|
||
|
# The EXIF info needs to be written as one block, + APP1, + one spare byte.
|
||
|
# Ensure that our buffer is big enough. Same with the icc_profile block.
|
||
|
bufsize = max(ImageFile.MAXBLOCK, bufsize, len(exif) + 5, len(extra) + 1)
|
||
|
|
||
|
ImageFile._save(im, fp, [("jpeg", (0, 0) + im.size, 0, rawmode)], bufsize)
|
||
|
|
||
|
|
||
|
def _save_cjpeg(im, fp, filename):
|
||
|
# ALTERNATIVE: handle JPEGs via the IJG command line utilities.
|
||
|
tempfile = im._dump()
|
||
|
subprocess.check_call(["cjpeg", "-outfile", filename, tempfile])
|
||
|
try:
|
||
|
os.unlink(tempfile)
|
||
|
except OSError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
##
|
||
|
# Factory for making JPEG and MPO instances
|
||
|
def jpeg_factory(fp=None, filename=None):
|
||
|
im = JpegImageFile(fp, filename)
|
||
|
try:
|
||
|
mpheader = im._getmp()
|
||
|
if mpheader[45057] > 1:
|
||
|
# It's actually an MPO
|
||
|
from .MpoImagePlugin import MpoImageFile
|
||
|
|
||
|
# Don't reload everything, just convert it.
|
||
|
im = MpoImageFile.adopt(im, mpheader)
|
||
|
except (TypeError, IndexError):
|
||
|
# It is really a JPEG
|
||
|
pass
|
||
|
except SyntaxError:
|
||
|
warnings.warn(
|
||
|
"Image appears to be a malformed MPO file, it will be "
|
||
|
"interpreted as a base JPEG file"
|
||
|
)
|
||
|
return im
|
||
|
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
# Registry stuff
|
||
|
|
||
|
Image.register_open(JpegImageFile.format, jpeg_factory, _accept)
|
||
|
Image.register_save(JpegImageFile.format, _save)
|
||
|
|
||
|
Image.register_extensions(JpegImageFile.format, [".jfif", ".jpe", ".jpg", ".jpeg"])
|
||
|
|
||
|
Image.register_mime(JpegImageFile.format, "image/jpeg")
|