# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # https://developers.google.com/protocol-buffers/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Code for decoding protocol buffer primitives. This code is very similar to encoder.py -- read the docs for that module first. A "decoder" is a function with the signature: Decode(buffer, pos, end, message, field_dict) The arguments are: buffer: The string containing the encoded message. pos: The current position in the string. end: The position in the string where the current message ends. May be less than len(buffer) if we're reading a sub-message. message: The message object into which we're parsing. field_dict: message._fields (avoids a hashtable lookup). The decoder reads the field and stores it into field_dict, returning the new buffer position. A decoder for a repeated field may proactively decode all of the elements of that field, if they appear consecutively. Note that decoders may throw any of the following: IndexError: Indicates a truncated message. struct.error: Unpacking of a fixed-width field failed. message.DecodeError: Other errors. Decoders are expected to raise an exception if they are called with pos > end. This allows callers to be lax about bounds checking: it's fineto read past "end" as long as you are sure that someone else will notice and throw an exception later on. Something up the call stack is expected to catch IndexError and struct.error and convert them to message.DecodeError. Decoders are constructed using decoder constructors with the signature: MakeDecoder(field_number, is_repeated, is_packed, key, new_default) The arguments are: field_number: The field number of the field we want to decode. is_repeated: Is the field a repeated field? (bool) is_packed: Is the field a packed field? (bool) key: The key to use when looking up the field within field_dict. (This is actually the FieldDescriptor but nothing in this file should depend on that.) new_default: A function which takes a message object as a parameter and returns a new instance of the default value for this field. (This is called for repeated fields and sub-messages, when an instance does not already exist.) As with encoders, we define a decoder constructor for every type of field. Then, for every field of every message class we construct an actual decoder. That decoder goes into a dict indexed by tag, so when we decode a message we repeatedly read a tag, look up the corresponding decoder, and invoke it. """ __author__ = 'kenton@google.com (Kenton Varda)' import struct import sys import six _UCS2_MAXUNICODE = 65535 if six.PY3: long = int else: import re # pylint: disable=g-import-not-at-top _SURROGATE_PATTERN = re.compile(six.u(r'[\ud800-\udfff]')) from google.protobuf.internal import containers from google.protobuf.internal import encoder from google.protobuf.internal import wire_format from google.protobuf import message # This will overflow and thus become IEEE-754 "infinity". We would use # "float('inf')" but it doesn't work on Windows pre-Python-2.6. _POS_INF = 1e10000 _NEG_INF = -_POS_INF _NAN = _POS_INF * 0 # This is not for optimization, but rather to avoid conflicts with local # variables named "message". _DecodeError = message.DecodeError def _VarintDecoder(mask, result_type): """Return an encoder for a basic varint value (does not include tag). Decoded values will be bitwise-anded with the given mask before being returned, e.g. to limit them to 32 bits. The returned decoder does not take the usual "end" parameter -- the caller is expected to do bounds checking after the fact (often the caller can defer such checking until later). The decoder returns a (value, new_pos) pair. """ def DecodeVarint(buffer, pos): result = 0 shift = 0 while 1: b = six.indexbytes(buffer, pos) result |= ((b & 0x7f) << shift) pos += 1 if not (b & 0x80): result &= mask result = result_type(result) return (result, pos) shift += 7 if shift >= 64: raise _DecodeError('Too many bytes when decoding varint.') return DecodeVarint def _SignedVarintDecoder(bits, result_type): """Like _VarintDecoder() but decodes signed values.""" signbit = 1 << (bits - 1) mask = (1 << bits) - 1 def DecodeVarint(buffer, pos): result = 0 shift = 0 while 1: b = six.indexbytes(buffer, pos) result |= ((b & 0x7f) << shift) pos += 1 if not (b & 0x80): result &= mask result = (result ^ signbit) - signbit result = result_type(result) return (result, pos) shift += 7 if shift >= 64: raise _DecodeError('Too many bytes when decoding varint.') return DecodeVarint # We force 32-bit values to int and 64-bit values to long to make # alternate implementations where the distinction is more significant # (e.g. the C++ implementation) simpler. _DecodeVarint = _VarintDecoder((1 << 64) - 1, long) _DecodeSignedVarint = _SignedVarintDecoder(64, long) # Use these versions for values which must be limited to 32 bits. _DecodeVarint32 = _VarintDecoder((1 << 32) - 1, int) _DecodeSignedVarint32 = _SignedVarintDecoder(32, int) def ReadTag(buffer, pos): """Read a tag from the memoryview, and return a (tag_bytes, new_pos) tuple. We return the raw bytes of the tag rather than decoding them. The raw bytes can then be used to look up the proper decoder. This effectively allows us to trade some work that would be done in pure-python (decoding a varint) for work that is done in C (searching for a byte string in a hash table). In a low-level language it would be much cheaper to decode the varint and use that, but not in Python. Args: buffer: memoryview object of the encoded bytes pos: int of the current position to start from Returns: Tuple[bytes, int] of the tag data and new position. """ start = pos while six.indexbytes(buffer, pos) & 0x80: pos += 1 pos += 1 tag_bytes = buffer[start:pos].tobytes() return tag_bytes, pos # -------------------------------------------------------------------- def _SimpleDecoder(wire_type, decode_value): """Return a constructor for a decoder for fields of a particular type. Args: wire_type: The field's wire type. decode_value: A function which decodes an individual value, e.g. _DecodeVarint() """ def SpecificDecoder(field_number, is_repeated, is_packed, key, new_default): if is_packed: local_DecodeVarint = _DecodeVarint def DecodePackedField(buffer, pos, end, message, field_dict): value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) (endpoint, pos) = local_DecodeVarint(buffer, pos) endpoint += pos if endpoint > end: raise _DecodeError('Truncated message.') while pos < endpoint: (element, pos) = decode_value(buffer, pos) value.append(element) if pos > endpoint: del value[-1] # Discard corrupt value. raise _DecodeError('Packed element was truncated.') return pos return DecodePackedField elif is_repeated: tag_bytes = encoder.TagBytes(field_number, wire_type) tag_len = len(tag_bytes) def DecodeRepeatedField(buffer, pos, end, message, field_dict): value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) while 1: (element, new_pos) = decode_value(buffer, pos) value.append(element) # Predict that the next tag is another copy of the same repeated # field. pos = new_pos + tag_len if buffer[new_pos:pos] != tag_bytes or new_pos >= end: # Prediction failed. Return. if new_pos > end: raise _DecodeError('Truncated message.') return new_pos return DecodeRepeatedField else: def DecodeField(buffer, pos, end, message, field_dict): (field_dict[key], pos) = decode_value(buffer, pos) if pos > end: del field_dict[key] # Discard corrupt value. raise _DecodeError('Truncated message.') return pos return DecodeField return SpecificDecoder def _ModifiedDecoder(wire_type, decode_value, modify_value): """Like SimpleDecoder but additionally invokes modify_value on every value before storing it. Usually modify_value is ZigZagDecode. """ # Reusing _SimpleDecoder is slightly slower than copying a bunch of code, but # not enough to make a significant difference. def InnerDecode(buffer, pos): (result, new_pos) = decode_value(buffer, pos) return (modify_value(result), new_pos) return _SimpleDecoder(wire_type, InnerDecode) def _StructPackDecoder(wire_type, format): """Return a constructor for a decoder for a fixed-width field. Args: wire_type: The field's wire type. format: The format string to pass to struct.unpack(). """ value_size = struct.calcsize(format) local_unpack = struct.unpack # Reusing _SimpleDecoder is slightly slower than copying a bunch of code, but # not enough to make a significant difference. # Note that we expect someone up-stack to catch struct.error and convert # it to _DecodeError -- this way we don't have to set up exception- # handling blocks every time we parse one value. def InnerDecode(buffer, pos): new_pos = pos + value_size result = local_unpack(format, buffer[pos:new_pos])[0] return (result, new_pos) return _SimpleDecoder(wire_type, InnerDecode) def _FloatDecoder(): """Returns a decoder for a float field. This code works around a bug in struct.unpack for non-finite 32-bit floating-point values. """ local_unpack = struct.unpack def InnerDecode(buffer, pos): """Decode serialized float to a float and new position. Args: buffer: memoryview of the serialized bytes pos: int, position in the memory view to start at. Returns: Tuple[float, int] of the deserialized float value and new position in the serialized data. """ # We expect a 32-bit value in little-endian byte order. Bit 1 is the sign # bit, bits 2-9 represent the exponent, and bits 10-32 are the significand. new_pos = pos + 4 float_bytes = buffer[pos:new_pos].tobytes() # If this value has all its exponent bits set, then it's non-finite. # In Python 2.4, struct.unpack will convert it to a finite 64-bit value. # To avoid that, we parse it specially. if (float_bytes[3:4] in b'\x7F\xFF' and float_bytes[2:3] >= b'\x80'): # If at least one significand bit is set... if float_bytes[0:3] != b'\x00\x00\x80': return (_NAN, new_pos) # If sign bit is set... if float_bytes[3:4] == b'\xFF': return (_NEG_INF, new_pos) return (_POS_INF, new_pos) # Note that we expect someone up-stack to catch struct.error and convert # it to _DecodeError -- this way we don't have to set up exception- # handling blocks every time we parse one value. result = local_unpack('<f', float_bytes)[0] return (result, new_pos) return _SimpleDecoder(wire_format.WIRETYPE_FIXED32, InnerDecode) def _DoubleDecoder(): """Returns a decoder for a double field. This code works around a bug in struct.unpack for not-a-number. """ local_unpack = struct.unpack def InnerDecode(buffer, pos): """Decode serialized double to a double and new position. Args: buffer: memoryview of the serialized bytes. pos: int, position in the memory view to start at. Returns: Tuple[float, int] of the decoded double value and new position in the serialized data. """ # We expect a 64-bit value in little-endian byte order. Bit 1 is the sign # bit, bits 2-12 represent the exponent, and bits 13-64 are the significand. new_pos = pos + 8 double_bytes = buffer[pos:new_pos].tobytes() # If this value has all its exponent bits set and at least one significand # bit set, it's not a number. In Python 2.4, struct.unpack will treat it # as inf or -inf. To avoid that, we treat it specially. if ((double_bytes[7:8] in b'\x7F\xFF') and (double_bytes[6:7] >= b'\xF0') and (double_bytes[0:7] != b'\x00\x00\x00\x00\x00\x00\xF0')): return (_NAN, new_pos) # Note that we expect someone up-stack to catch struct.error and convert # it to _DecodeError -- this way we don't have to set up exception- # handling blocks every time we parse one value. result = local_unpack('<d', double_bytes)[0] return (result, new_pos) return _SimpleDecoder(wire_format.WIRETYPE_FIXED64, InnerDecode) def EnumDecoder(field_number, is_repeated, is_packed, key, new_default): enum_type = key.enum_type if is_packed: local_DecodeVarint = _DecodeVarint def DecodePackedField(buffer, pos, end, message, field_dict): """Decode serialized packed enum to its value and a new position. Args: buffer: memoryview of the serialized bytes. pos: int, position in the memory view to start at. end: int, end position of serialized data message: Message object to store unknown fields in field_dict: Map[Descriptor, Any] to store decoded values in. Returns: int, new position in serialized data. """ value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) (endpoint, pos) = local_DecodeVarint(buffer, pos) endpoint += pos if endpoint > end: raise _DecodeError('Truncated message.') while pos < endpoint: value_start_pos = pos (element, pos) = _DecodeSignedVarint32(buffer, pos) # pylint: disable=protected-access if element in enum_type.values_by_number: value.append(element) else: if not message._unknown_fields: message._unknown_fields = [] tag_bytes = encoder.TagBytes(field_number, wire_format.WIRETYPE_VARINT) message._unknown_fields.append( (tag_bytes, buffer[value_start_pos:pos].tobytes())) if message._unknown_field_set is None: message._unknown_field_set = containers.UnknownFieldSet() message._unknown_field_set._add( field_number, wire_format.WIRETYPE_VARINT, element) # pylint: enable=protected-access if pos > endpoint: if element in enum_type.values_by_number: del value[-1] # Discard corrupt value. else: del message._unknown_fields[-1] # pylint: disable=protected-access del message._unknown_field_set._values[-1] # pylint: enable=protected-access raise _DecodeError('Packed element was truncated.') return pos return DecodePackedField elif is_repeated: tag_bytes = encoder.TagBytes(field_number, wire_format.WIRETYPE_VARINT) tag_len = len(tag_bytes) def DecodeRepeatedField(buffer, pos, end, message, field_dict): """Decode serialized repeated enum to its value and a new position. Args: buffer: memoryview of the serialized bytes. pos: int, position in the memory view to start at. end: int, end position of serialized data message: Message object to store unknown fields in field_dict: Map[Descriptor, Any] to store decoded values in. Returns: int, new position in serialized data. """ value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) while 1: (element, new_pos) = _DecodeSignedVarint32(buffer, pos) # pylint: disable=protected-access if element in enum_type.values_by_number: value.append(element) else: if not message._unknown_fields: message._unknown_fields = [] message._unknown_fields.append( (tag_bytes, buffer[pos:new_pos].tobytes())) if message._unknown_field_set is None: message._unknown_field_set = containers.UnknownFieldSet() message._unknown_field_set._add( field_number, wire_format.WIRETYPE_VARINT, element) # pylint: enable=protected-access # Predict that the next tag is another copy of the same repeated # field. pos = new_pos + tag_len if buffer[new_pos:pos] != tag_bytes or new_pos >= end: # Prediction failed. Return. if new_pos > end: raise _DecodeError('Truncated message.') return new_pos return DecodeRepeatedField else: def DecodeField(buffer, pos, end, message, field_dict): """Decode serialized repeated enum to its value and a new position. Args: buffer: memoryview of the serialized bytes. pos: int, position in the memory view to start at. end: int, end position of serialized data message: Message object to store unknown fields in field_dict: Map[Descriptor, Any] to store decoded values in. Returns: int, new position in serialized data. """ value_start_pos = pos (enum_value, pos) = _DecodeSignedVarint32(buffer, pos) if pos > end: raise _DecodeError('Truncated message.') # pylint: disable=protected-access if enum_value in enum_type.values_by_number: field_dict[key] = enum_value else: if not message._unknown_fields: message._unknown_fields = [] tag_bytes = encoder.TagBytes(field_number, wire_format.WIRETYPE_VARINT) message._unknown_fields.append( (tag_bytes, buffer[value_start_pos:pos].tobytes())) if message._unknown_field_set is None: message._unknown_field_set = containers.UnknownFieldSet() message._unknown_field_set._add( field_number, wire_format.WIRETYPE_VARINT, enum_value) # pylint: enable=protected-access return pos return DecodeField # -------------------------------------------------------------------- Int32Decoder = _SimpleDecoder( wire_format.WIRETYPE_VARINT, _DecodeSignedVarint32) Int64Decoder = _SimpleDecoder( wire_format.WIRETYPE_VARINT, _DecodeSignedVarint) UInt32Decoder = _SimpleDecoder(wire_format.WIRETYPE_VARINT, _DecodeVarint32) UInt64Decoder = _SimpleDecoder(wire_format.WIRETYPE_VARINT, _DecodeVarint) SInt32Decoder = _ModifiedDecoder( wire_format.WIRETYPE_VARINT, _DecodeVarint32, wire_format.ZigZagDecode) SInt64Decoder = _ModifiedDecoder( wire_format.WIRETYPE_VARINT, _DecodeVarint, wire_format.ZigZagDecode) # Note that Python conveniently guarantees that when using the '<' prefix on # formats, they will also have the same size across all platforms (as opposed # to without the prefix, where their sizes depend on the C compiler's basic # type sizes). Fixed32Decoder = _StructPackDecoder(wire_format.WIRETYPE_FIXED32, '<I') Fixed64Decoder = _StructPackDecoder(wire_format.WIRETYPE_FIXED64, '<Q') SFixed32Decoder = _StructPackDecoder(wire_format.WIRETYPE_FIXED32, '<i') SFixed64Decoder = _StructPackDecoder(wire_format.WIRETYPE_FIXED64, '<q') FloatDecoder = _FloatDecoder() DoubleDecoder = _DoubleDecoder() BoolDecoder = _ModifiedDecoder( wire_format.WIRETYPE_VARINT, _DecodeVarint, bool) def StringDecoder(field_number, is_repeated, is_packed, key, new_default, is_strict_utf8=False): """Returns a decoder for a string field.""" local_DecodeVarint = _DecodeVarint local_unicode = six.text_type def _ConvertToUnicode(memview): """Convert byte to unicode.""" byte_str = memview.tobytes() try: value = local_unicode(byte_str, 'utf-8') except UnicodeDecodeError as e: # add more information to the error message and re-raise it. e.reason = '%s in field: %s' % (e, key.full_name) raise if is_strict_utf8 and six.PY2 and sys.maxunicode > _UCS2_MAXUNICODE: # Only do the check for python2 ucs4 when is_strict_utf8 enabled if _SURROGATE_PATTERN.search(value): reason = ('String field %s contains invalid UTF-8 data when parsing' 'a protocol buffer: surrogates not allowed. Use' 'the bytes type if you intend to send raw bytes.') % ( key.full_name) raise message.DecodeError(reason) return value assert not is_packed if is_repeated: tag_bytes = encoder.TagBytes(field_number, wire_format.WIRETYPE_LENGTH_DELIMITED) tag_len = len(tag_bytes) def DecodeRepeatedField(buffer, pos, end, message, field_dict): value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) while 1: (size, pos) = local_DecodeVarint(buffer, pos) new_pos = pos + size if new_pos > end: raise _DecodeError('Truncated string.') value.append(_ConvertToUnicode(buffer[pos:new_pos])) # Predict that the next tag is another copy of the same repeated field. pos = new_pos + tag_len if buffer[new_pos:pos] != tag_bytes or new_pos == end: # Prediction failed. Return. return new_pos return DecodeRepeatedField else: def DecodeField(buffer, pos, end, message, field_dict): (size, pos) = local_DecodeVarint(buffer, pos) new_pos = pos + size if new_pos > end: raise _DecodeError('Truncated string.') field_dict[key] = _ConvertToUnicode(buffer[pos:new_pos]) return new_pos return DecodeField def BytesDecoder(field_number, is_repeated, is_packed, key, new_default): """Returns a decoder for a bytes field.""" local_DecodeVarint = _DecodeVarint assert not is_packed if is_repeated: tag_bytes = encoder.TagBytes(field_number, wire_format.WIRETYPE_LENGTH_DELIMITED) tag_len = len(tag_bytes) def DecodeRepeatedField(buffer, pos, end, message, field_dict): value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) while 1: (size, pos) = local_DecodeVarint(buffer, pos) new_pos = pos + size if new_pos > end: raise _DecodeError('Truncated string.') value.append(buffer[pos:new_pos].tobytes()) # Predict that the next tag is another copy of the same repeated field. pos = new_pos + tag_len if buffer[new_pos:pos] != tag_bytes or new_pos == end: # Prediction failed. Return. return new_pos return DecodeRepeatedField else: def DecodeField(buffer, pos, end, message, field_dict): (size, pos) = local_DecodeVarint(buffer, pos) new_pos = pos + size if new_pos > end: raise _DecodeError('Truncated string.') field_dict[key] = buffer[pos:new_pos].tobytes() return new_pos return DecodeField def GroupDecoder(field_number, is_repeated, is_packed, key, new_default): """Returns a decoder for a group field.""" end_tag_bytes = encoder.TagBytes(field_number, wire_format.WIRETYPE_END_GROUP) end_tag_len = len(end_tag_bytes) assert not is_packed if is_repeated: tag_bytes = encoder.TagBytes(field_number, wire_format.WIRETYPE_START_GROUP) tag_len = len(tag_bytes) def DecodeRepeatedField(buffer, pos, end, message, field_dict): value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) while 1: value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) # Read sub-message. pos = value.add()._InternalParse(buffer, pos, end) # Read end tag. new_pos = pos+end_tag_len if buffer[pos:new_pos] != end_tag_bytes or new_pos > end: raise _DecodeError('Missing group end tag.') # Predict that the next tag is another copy of the same repeated field. pos = new_pos + tag_len if buffer[new_pos:pos] != tag_bytes or new_pos == end: # Prediction failed. Return. return new_pos return DecodeRepeatedField else: def DecodeField(buffer, pos, end, message, field_dict): value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) # Read sub-message. pos = value._InternalParse(buffer, pos, end) # Read end tag. new_pos = pos+end_tag_len if buffer[pos:new_pos] != end_tag_bytes or new_pos > end: raise _DecodeError('Missing group end tag.') return new_pos return DecodeField def MessageDecoder(field_number, is_repeated, is_packed, key, new_default): """Returns a decoder for a message field.""" local_DecodeVarint = _DecodeVarint assert not is_packed if is_repeated: tag_bytes = encoder.TagBytes(field_number, wire_format.WIRETYPE_LENGTH_DELIMITED) tag_len = len(tag_bytes) def DecodeRepeatedField(buffer, pos, end, message, field_dict): value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) while 1: # Read length. (size, pos) = local_DecodeVarint(buffer, pos) new_pos = pos + size if new_pos > end: raise _DecodeError('Truncated message.') # Read sub-message. if value.add()._InternalParse(buffer, pos, new_pos) != new_pos: # The only reason _InternalParse would return early is if it # encountered an end-group tag. raise _DecodeError('Unexpected end-group tag.') # Predict that the next tag is another copy of the same repeated field. pos = new_pos + tag_len if buffer[new_pos:pos] != tag_bytes or new_pos == end: # Prediction failed. Return. return new_pos return DecodeRepeatedField else: def DecodeField(buffer, pos, end, message, field_dict): value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) # Read length. (size, pos) = local_DecodeVarint(buffer, pos) new_pos = pos + size if new_pos > end: raise _DecodeError('Truncated message.') # Read sub-message. if value._InternalParse(buffer, pos, new_pos) != new_pos: # The only reason _InternalParse would return early is if it encountered # an end-group tag. raise _DecodeError('Unexpected end-group tag.') return new_pos return DecodeField # -------------------------------------------------------------------- MESSAGE_SET_ITEM_TAG = encoder.TagBytes(1, wire_format.WIRETYPE_START_GROUP) def MessageSetItemDecoder(descriptor): """Returns a decoder for a MessageSet item. The parameter is the message Descriptor. The message set message looks like this: message MessageSet { repeated group Item = 1 { required int32 type_id = 2; required string message = 3; } } """ type_id_tag_bytes = encoder.TagBytes(2, wire_format.WIRETYPE_VARINT) message_tag_bytes = encoder.TagBytes(3, wire_format.WIRETYPE_LENGTH_DELIMITED) item_end_tag_bytes = encoder.TagBytes(1, wire_format.WIRETYPE_END_GROUP) local_ReadTag = ReadTag local_DecodeVarint = _DecodeVarint local_SkipField = SkipField def DecodeItem(buffer, pos, end, message, field_dict): """Decode serialized message set to its value and new position. Args: buffer: memoryview of the serialized bytes. pos: int, position in the memory view to start at. end: int, end position of serialized data message: Message object to store unknown fields in field_dict: Map[Descriptor, Any] to store decoded values in. Returns: int, new position in serialized data. """ message_set_item_start = pos type_id = -1 message_start = -1 message_end = -1 # Technically, type_id and message can appear in any order, so we need # a little loop here. while 1: (tag_bytes, pos) = local_ReadTag(buffer, pos) if tag_bytes == type_id_tag_bytes: (type_id, pos) = local_DecodeVarint(buffer, pos) elif tag_bytes == message_tag_bytes: (size, message_start) = local_DecodeVarint(buffer, pos) pos = message_end = message_start + size elif tag_bytes == item_end_tag_bytes: break else: pos = SkipField(buffer, pos, end, tag_bytes) if pos == -1: raise _DecodeError('Missing group end tag.') if pos > end: raise _DecodeError('Truncated message.') if type_id == -1: raise _DecodeError('MessageSet item missing type_id.') if message_start == -1: raise _DecodeError('MessageSet item missing message.') extension = message.Extensions._FindExtensionByNumber(type_id) # pylint: disable=protected-access if extension is not None: value = field_dict.get(extension) if value is None: message_type = extension.message_type if not hasattr(message_type, '_concrete_class'): # pylint: disable=protected-access message._FACTORY.GetPrototype(message_type) value = field_dict.setdefault( extension, message_type._concrete_class()) if value._InternalParse(buffer, message_start,message_end) != message_end: # The only reason _InternalParse would return early is if it encountered # an end-group tag. raise _DecodeError('Unexpected end-group tag.') else: if not message._unknown_fields: message._unknown_fields = [] message._unknown_fields.append( (MESSAGE_SET_ITEM_TAG, buffer[message_set_item_start:pos].tobytes())) if message._unknown_field_set is None: message._unknown_field_set = containers.UnknownFieldSet() message._unknown_field_set._add( type_id, wire_format.WIRETYPE_LENGTH_DELIMITED, buffer[message_start:message_end].tobytes()) # pylint: enable=protected-access return pos return DecodeItem # -------------------------------------------------------------------- def MapDecoder(field_descriptor, new_default, is_message_map): """Returns a decoder for a map field.""" key = field_descriptor tag_bytes = encoder.TagBytes(field_descriptor.number, wire_format.WIRETYPE_LENGTH_DELIMITED) tag_len = len(tag_bytes) local_DecodeVarint = _DecodeVarint # Can't read _concrete_class yet; might not be initialized. message_type = field_descriptor.message_type def DecodeMap(buffer, pos, end, message, field_dict): submsg = message_type._concrete_class() value = field_dict.get(key) if value is None: value = field_dict.setdefault(key, new_default(message)) while 1: # Read length. (size, pos) = local_DecodeVarint(buffer, pos) new_pos = pos + size if new_pos > end: raise _DecodeError('Truncated message.') # Read sub-message. submsg.Clear() if submsg._InternalParse(buffer, pos, new_pos) != new_pos: # The only reason _InternalParse would return early is if it # encountered an end-group tag. raise _DecodeError('Unexpected end-group tag.') if is_message_map: value[submsg.key].CopyFrom(submsg.value) else: value[submsg.key] = submsg.value # Predict that the next tag is another copy of the same repeated field. pos = new_pos + tag_len if buffer[new_pos:pos] != tag_bytes or new_pos == end: # Prediction failed. Return. return new_pos return DecodeMap # -------------------------------------------------------------------- # Optimization is not as heavy here because calls to SkipField() are rare, # except for handling end-group tags. def _SkipVarint(buffer, pos, end): """Skip a varint value. Returns the new position.""" # Previously ord(buffer[pos]) raised IndexError when pos is out of range. # With this code, ord(b'') raises TypeError. Both are handled in # python_message.py to generate a 'Truncated message' error. while ord(buffer[pos:pos+1].tobytes()) & 0x80: pos += 1 pos += 1 if pos > end: raise _DecodeError('Truncated message.') return pos def _SkipFixed64(buffer, pos, end): """Skip a fixed64 value. Returns the new position.""" pos += 8 if pos > end: raise _DecodeError('Truncated message.') return pos def _DecodeFixed64(buffer, pos): """Decode a fixed64.""" new_pos = pos + 8 return (struct.unpack('<Q', buffer[pos:new_pos])[0], new_pos) def _SkipLengthDelimited(buffer, pos, end): """Skip a length-delimited value. Returns the new position.""" (size, pos) = _DecodeVarint(buffer, pos) pos += size if pos > end: raise _DecodeError('Truncated message.') return pos def _SkipGroup(buffer, pos, end): """Skip sub-group. Returns the new position.""" while 1: (tag_bytes, pos) = ReadTag(buffer, pos) new_pos = SkipField(buffer, pos, end, tag_bytes) if new_pos == -1: return pos pos = new_pos def _DecodeUnknownFieldSet(buffer, pos, end_pos=None): """Decode UnknownFieldSet. Returns the UnknownFieldSet and new position.""" unknown_field_set = containers.UnknownFieldSet() while end_pos is None or pos < end_pos: (tag_bytes, pos) = ReadTag(buffer, pos) (tag, _) = _DecodeVarint(tag_bytes, 0) field_number, wire_type = wire_format.UnpackTag(tag) if wire_type == wire_format.WIRETYPE_END_GROUP: break (data, pos) = _DecodeUnknownField(buffer, pos, wire_type) # pylint: disable=protected-access unknown_field_set._add(field_number, wire_type, data) return (unknown_field_set, pos) def _DecodeUnknownField(buffer, pos, wire_type): """Decode a unknown field. Returns the UnknownField and new position.""" if wire_type == wire_format.WIRETYPE_VARINT: (data, pos) = _DecodeVarint(buffer, pos) elif wire_type == wire_format.WIRETYPE_FIXED64: (data, pos) = _DecodeFixed64(buffer, pos) elif wire_type == wire_format.WIRETYPE_FIXED32: (data, pos) = _DecodeFixed32(buffer, pos) elif wire_type == wire_format.WIRETYPE_LENGTH_DELIMITED: (size, pos) = _DecodeVarint(buffer, pos) data = buffer[pos:pos+size].tobytes() pos += size elif wire_type == wire_format.WIRETYPE_START_GROUP: (data, pos) = _DecodeUnknownFieldSet(buffer, pos) elif wire_type == wire_format.WIRETYPE_END_GROUP: return (0, -1) else: raise _DecodeError('Wrong wire type in tag.') return (data, pos) def _EndGroup(buffer, pos, end): """Skipping an END_GROUP tag returns -1 to tell the parent loop to break.""" return -1 def _SkipFixed32(buffer, pos, end): """Skip a fixed32 value. Returns the new position.""" pos += 4 if pos > end: raise _DecodeError('Truncated message.') return pos def _DecodeFixed32(buffer, pos): """Decode a fixed32.""" new_pos = pos + 4 return (struct.unpack('<I', buffer[pos:new_pos])[0], new_pos) def _RaiseInvalidWireType(buffer, pos, end): """Skip function for unknown wire types. Raises an exception.""" raise _DecodeError('Tag had invalid wire type.') def _FieldSkipper(): """Constructs the SkipField function.""" WIRETYPE_TO_SKIPPER = [ _SkipVarint, _SkipFixed64, _SkipLengthDelimited, _SkipGroup, _EndGroup, _SkipFixed32, _RaiseInvalidWireType, _RaiseInvalidWireType, ] wiretype_mask = wire_format.TAG_TYPE_MASK def SkipField(buffer, pos, end, tag_bytes): """Skips a field with the specified tag. |pos| should point to the byte immediately after the tag. Returns: The new position (after the tag value), or -1 if the tag is an end-group tag (in which case the calling loop should break). """ # The wire type is always in the first byte since varints are little-endian. wire_type = ord(tag_bytes[0:1]) & wiretype_mask return WIRETYPE_TO_SKIPPER[wire_type](buffer, pos, end) return SkipField SkipField = _FieldSkipper()