mirror of https://github.com/sgoudham/nvim.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
339 lines
8.2 KiB
Lua
339 lines
8.2 KiB
Lua
--[[
|
|
Lua implementation of HSLuv and HPLuv color spaces
|
|
Homepage: http://www.hsluv.org/
|
|
|
|
Copyright (C) 2019 Alexei Boronine
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
|
associated documentation files (the "Software"), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
|
|
following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all copies or substantial
|
|
portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
|
|
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
|
|
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
]]
|
|
local hsluv = {}
|
|
|
|
local hexChars = "0123456789abcdef"
|
|
|
|
local distance_line_from_origin = function(line)
|
|
return math.abs(line.intercept) / math.sqrt((line.slope ^ 2) + 1)
|
|
end
|
|
|
|
local length_of_ray_until_intersect = function(theta, line)
|
|
return line.intercept / (math.sin(theta) - line.slope * math.cos(theta))
|
|
end
|
|
|
|
hsluv.get_bounds = function(l)
|
|
local result = {}
|
|
local sub2
|
|
local sub1 = ((l + 16) ^ 3) / 1560896
|
|
if sub1 > hsluv.epsilon then
|
|
sub2 = sub1
|
|
else
|
|
sub2 = l / hsluv.kappa
|
|
end
|
|
|
|
for i = 1, 3 do
|
|
local m1 = hsluv.m[i][1]
|
|
local m2 = hsluv.m[i][2]
|
|
local m3 = hsluv.m[i][3]
|
|
|
|
for t = 0, 1 do
|
|
local top1 = (284517 * m1 - 94839 * m3) * sub2
|
|
local top2 = (838422 * m3 + 769860 * m2 + 731718 * m1) * l * sub2 - 769860 * t * l
|
|
local bottom = (632260 * m3 - 126452 * m2) * sub2 + 126452 * t
|
|
table.insert(result, { slope = top1 / bottom, intercept = top2 / bottom })
|
|
end
|
|
end
|
|
return result
|
|
end
|
|
|
|
hsluv.max_safe_chroma_for_l = function(l)
|
|
local bounds = hsluv.get_bounds(l)
|
|
local min = 1.7976931348623157e+308
|
|
|
|
for i = 1, 6 do
|
|
local length = distance_line_from_origin(bounds[i])
|
|
if length >= 0 then
|
|
min = math.min(min, length)
|
|
end
|
|
end
|
|
return min
|
|
end
|
|
|
|
hsluv.max_safe_chroma_for_lh = function(l, h)
|
|
local hrad = h / 360 * math.pi * 2
|
|
local bounds = hsluv.get_bounds(l)
|
|
local min = 1.7976931348623157e+308
|
|
|
|
for i = 1, 6 do
|
|
local bound = bounds[i]
|
|
local length = length_of_ray_until_intersect(hrad, bound)
|
|
if length >= 0 then
|
|
min = math.min(min, length)
|
|
end
|
|
end
|
|
return min
|
|
end
|
|
|
|
hsluv.dot_product = function(a, b)
|
|
local sum = 0
|
|
for i = 1, 3 do
|
|
sum = sum + a[i] * b[i]
|
|
end
|
|
return sum
|
|
end
|
|
|
|
hsluv.from_linear = function(c)
|
|
if c <= 0.0031308 then
|
|
return 12.92 * c
|
|
else
|
|
return 1.055 * (c ^ 0.416666666666666685) - 0.055
|
|
end
|
|
end
|
|
|
|
hsluv.to_linear = function(c)
|
|
if c > 0.04045 then
|
|
return ((c + 0.055) / 1.055) ^ 2.4
|
|
else
|
|
return c / 12.92
|
|
end
|
|
end
|
|
|
|
hsluv.xyz_to_rgb = function(tuple)
|
|
return {
|
|
hsluv.from_linear(hsluv.dot_product(hsluv.m[1], tuple)),
|
|
hsluv.from_linear(hsluv.dot_product(hsluv.m[2], tuple)),
|
|
hsluv.from_linear(hsluv.dot_product(hsluv.m[3], tuple)),
|
|
}
|
|
end
|
|
|
|
hsluv.rgb_to_xyz = function(tuple)
|
|
local rgbl = { hsluv.to_linear(tuple[1]), hsluv.to_linear(tuple[2]), hsluv.to_linear(tuple[3]) }
|
|
return {
|
|
hsluv.dot_product(hsluv.minv[1], rgbl),
|
|
hsluv.dot_product(hsluv.minv[2], rgbl),
|
|
hsluv.dot_product(hsluv.minv[3], rgbl),
|
|
}
|
|
end
|
|
|
|
hsluv.y_to_l = function(Y)
|
|
if Y <= hsluv.epsilon then
|
|
return Y / hsluv.refY * hsluv.kappa
|
|
else
|
|
return 116 * ((Y / hsluv.refY) ^ 0.333333333333333315) - 16
|
|
end
|
|
end
|
|
|
|
hsluv.l_to_y = function(L)
|
|
if L <= 8 then
|
|
return hsluv.refY * L / hsluv.kappa
|
|
else
|
|
return hsluv.refY * (((L + 16) / 116) ^ 3)
|
|
end
|
|
end
|
|
|
|
hsluv.xyz_to_luv = function(tuple)
|
|
local X = tuple[1]
|
|
local Y = tuple[2]
|
|
local divider = X + 15 * Y + 3 * tuple[3]
|
|
local varU = 4 * X
|
|
local varV = 9 * Y
|
|
if divider ~= 0 then
|
|
varU = varU / divider
|
|
varV = varV / divider
|
|
else
|
|
varU = 0
|
|
varV = 0
|
|
end
|
|
local L = hsluv.y_to_l(Y)
|
|
if L == 0 then
|
|
return { 0, 0, 0 }
|
|
end
|
|
return { L, 13 * L * (varU - hsluv.refU), 13 * L * (varV - hsluv.refV) }
|
|
end
|
|
|
|
hsluv.luv_to_xyz = function(tuple)
|
|
local L = tuple[1]
|
|
local U = tuple[2]
|
|
local V = tuple[3]
|
|
if L == 0 then
|
|
return { 0, 0, 0 }
|
|
end
|
|
local varU = U / (13 * L) + hsluv.refU
|
|
local varV = V / (13 * L) + hsluv.refV
|
|
local Y = hsluv.l_to_y(L)
|
|
local X = 0 - (9 * Y * varU) / (((varU - 4) * varV) - varU * varV)
|
|
return { X, Y, (9 * Y - 15 * varV * Y - varV * X) / (3 * varV) }
|
|
end
|
|
|
|
hsluv.luv_to_lch = function(tuple)
|
|
local L = tuple[1]
|
|
local U = tuple[2]
|
|
local V = tuple[3]
|
|
local C = math.sqrt(U * U + V * V)
|
|
local H
|
|
if C < 0.00000001 then
|
|
H = 0
|
|
else
|
|
H = math.atan2(V, U) * 180.0 / 3.1415926535897932
|
|
if H < 0 then
|
|
H = 360 + H
|
|
end
|
|
end
|
|
return { L, C, H }
|
|
end
|
|
|
|
hsluv.lch_to_luv = function(tuple)
|
|
local L = tuple[1]
|
|
local C = tuple[2]
|
|
local Hrad = tuple[3] / 360.0 * 2 * math.pi
|
|
return { L, math.cos(Hrad) * C, math.sin(Hrad) * C }
|
|
end
|
|
|
|
hsluv.hsluv_to_lch = function(tuple)
|
|
local H = tuple[1]
|
|
local S = tuple[2]
|
|
local L = tuple[3]
|
|
if L > 99.9999999 then
|
|
return { 100, 0, H }
|
|
end
|
|
if L < 0.00000001 then
|
|
return { 0, 0, H }
|
|
end
|
|
return { L, hsluv.max_safe_chroma_for_lh(L, H) / 100 * S, H }
|
|
end
|
|
|
|
hsluv.lch_to_hsluv = function(tuple)
|
|
local L = tuple[1]
|
|
local C = tuple[2]
|
|
local H = tuple[3]
|
|
local max_chroma = hsluv.max_safe_chroma_for_lh(L, H)
|
|
if L > 99.9999999 then
|
|
return { H, 0, 100 }
|
|
end
|
|
if L < 0.00000001 then
|
|
return { H, 0, 0 }
|
|
end
|
|
|
|
return { H, C / max_chroma * 100, L }
|
|
end
|
|
|
|
hsluv.hpluv_to_lch = function(tuple)
|
|
local H = tuple[1]
|
|
local S = tuple[2]
|
|
local L = tuple[3]
|
|
if L > 99.9999999 then
|
|
return { 100, 0, H }
|
|
end
|
|
if L < 0.00000001 then
|
|
return { 0, 0, H }
|
|
end
|
|
return { L, hsluv.max_safe_chroma_for_l(L) / 100 * S, H }
|
|
end
|
|
|
|
hsluv.lch_to_hpluv = function(tuple)
|
|
local L = tuple[1]
|
|
local C = tuple[2]
|
|
local H = tuple[3]
|
|
if L > 99.9999999 then
|
|
return { H, 0, 100 }
|
|
end
|
|
if L < 0.00000001 then
|
|
return { H, 0, 0 }
|
|
end
|
|
return { H, C / hsluv.max_safe_chroma_for_l(L) * 100, L }
|
|
end
|
|
|
|
hsluv.rgb_to_hex = function(tuple)
|
|
local h = "#"
|
|
for i = 1, 3 do
|
|
local c = math.floor(tuple[i] * 255 + 0.5)
|
|
local digit2 = math.fmod(c, 16)
|
|
local x = (c - digit2) / 16
|
|
local digit1 = math.floor(x)
|
|
h = h .. string.sub(hexChars, digit1 + 1, digit1 + 1)
|
|
h = h .. string.sub(hexChars, digit2 + 1, digit2 + 1)
|
|
end
|
|
return h
|
|
end
|
|
|
|
hsluv.hex_to_rgb = function(hex)
|
|
hex = string.lower(hex)
|
|
local ret = {}
|
|
for i = 0, 2 do
|
|
local char1 = string.sub(hex, i * 2 + 2, i * 2 + 2)
|
|
local char2 = string.sub(hex, i * 2 + 3, i * 2 + 3)
|
|
local digit1 = string.find(hexChars, char1) - 1
|
|
local digit2 = string.find(hexChars, char2) - 1
|
|
ret[i + 1] = (digit1 * 16 + digit2) / 255.0
|
|
end
|
|
return ret
|
|
end
|
|
|
|
hsluv.lch_to_rgb = function(tuple)
|
|
return hsluv.xyz_to_rgb(hsluv.luv_to_xyz(hsluv.lch_to_luv(tuple)))
|
|
end
|
|
|
|
hsluv.rgb_to_lch = function(tuple)
|
|
return hsluv.luv_to_lch(hsluv.xyz_to_luv(hsluv.rgb_to_xyz(tuple)))
|
|
end
|
|
|
|
hsluv.hsluv_to_rgb = function(tuple)
|
|
return hsluv.lch_to_rgb(hsluv.hsluv_to_lch(tuple))
|
|
end
|
|
|
|
hsluv.rgb_to_hsluv = function(tuple)
|
|
return hsluv.lch_to_hsluv(hsluv.rgb_to_lch(tuple))
|
|
end
|
|
|
|
hsluv.hpluv_to_rgb = function(tuple)
|
|
return hsluv.lch_to_rgb(hsluv.hpluv_to_lch(tuple))
|
|
end
|
|
|
|
hsluv.rgb_to_hpluv = function(tuple)
|
|
return hsluv.lch_to_hpluv(hsluv.rgb_to_lch(tuple))
|
|
end
|
|
|
|
hsluv.hsluv_to_hex = function(tuple)
|
|
return hsluv.rgb_to_hex(hsluv.hsluv_to_rgb(tuple))
|
|
end
|
|
|
|
hsluv.hpluv_to_hex = function(tuple)
|
|
return hsluv.rgb_to_hex(hsluv.hpluv_to_rgb(tuple))
|
|
end
|
|
|
|
hsluv.hex_to_hsluv = function(s)
|
|
return hsluv.rgb_to_hsluv(hsluv.hex_to_rgb(s))
|
|
end
|
|
|
|
hsluv.hex_to_hpluv = function(s)
|
|
return hsluv.rgb_to_hpluv(hsluv.hex_to_rgb(s))
|
|
end
|
|
|
|
hsluv.m = {
|
|
{ 3.240969941904521, -1.537383177570093, -0.498610760293 },
|
|
{ -0.96924363628087, 1.87596750150772, 0.041555057407175 },
|
|
{ 0.055630079696993, -0.20397695888897, 1.056971514242878 },
|
|
}
|
|
hsluv.minv = {
|
|
{ 0.41239079926595, 0.35758433938387, 0.18048078840183 },
|
|
{ 0.21263900587151, 0.71516867876775, 0.072192315360733 },
|
|
{ 0.019330818715591, 0.11919477979462, 0.95053215224966 },
|
|
}
|
|
hsluv.refY = 1.0
|
|
hsluv.refU = 0.19783000664283
|
|
hsluv.refV = 0.46831999493879
|
|
hsluv.kappa = 903.2962962
|
|
hsluv.epsilon = 0.0088564516
|
|
|
|
return hsluv
|