Demonstrate Lambdas
parent
84392c91c9
commit
03e4155bfc
@ -0,0 +1,28 @@
|
|||||||
|
sumSquareOrSquareSum :: (Ord a, Num a) => a -> a -> a
|
||||||
|
sumSquareOrSquareSum x y = (\sumSquare squareSum ->
|
||||||
|
if sumSquare > squareSum
|
||||||
|
then sumSquare
|
||||||
|
else squareSum) (x * 2 + y * 2) ((x + y) * 2)
|
||||||
|
|
||||||
|
doubleDouble :: Num a => a -> a
|
||||||
|
doubleDouble x = (\dubs -> dubs * 2) (x * 2)
|
||||||
|
|
||||||
|
overwrite :: Num p1 => p2 -> p1
|
||||||
|
overwrite x = (\x ->
|
||||||
|
(\x ->
|
||||||
|
(\x -> x) 4
|
||||||
|
) 3
|
||||||
|
) 2
|
||||||
|
|
||||||
|
inc :: Integer -> Integer
|
||||||
|
inc = (\x -> x + 1)
|
||||||
|
|
||||||
|
double :: Integer -> Integer
|
||||||
|
double = (\x -> x * 2)
|
||||||
|
|
||||||
|
square :: Integer -> Integer
|
||||||
|
square = (\x -> x ^ 2)
|
||||||
|
|
||||||
|
counter x = (\x -> x + 1)
|
||||||
|
((\x -> x + 1)
|
||||||
|
((\x -> x) x))
|
Loading…
Reference in New Issue